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What next after ASR in Indian Languages? 
We speak in order to be understood!

MUCS 2021: MUltilingual and Code-Switching ASR 
Challenges for Low Resource Indian Languages



The Low-resource ASR Problem

Acoustic models for state-of-the-art speech recognition systems are 
typically trained on several hundred hours of task specific training data, 
or more. However, in low resource scenarios often only a few tens of 
hours of annotated training data are available.

How can we effectively build models in low resource settings?



The Low-resource ASR Problem
How have we effectively built E2E ASR models in low resource settings?
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What do we do with ASR transcripts?
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What next? End-to-end SLU
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• Directly process speech to produce spoken language understanding (SLU) 
entity or intent label targets.

• <speech> I want a flight to Delhi from Chennai that makes a stop in Mumbai

• <SLU> Transcript + Intent label: I want a flight to Delhi from Chennai that makes a stop in 
Mumbai INT-FLIGHT

• <SLU> Transcript + Entity labels: I want a flight to DELHI B-toloc.cityname from CHENNAI B-
fromloc.cityname that makes a stop in MUMBAI B-stoploc.cityname

• <SLU> Entity labels only: DELHI B-toloc.cityname CHENNAI B-fromloc.cityname MUMBAI B-
stoploc.cityname

• <SLU> Intent label only: INT-FLIGHT

• SLU as a low resource task
• SLU domain specific data is typically very limited – few tens of hours

• Data labelled with SLU intents and labels are also very limited.

The SLU task as a low resource task



Can we use what we learnt, for SLU?
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Can we use what we learnt, for SLU?
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Leveraging pre-trained networks
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• Directly process speech to produce spoken language understanding (SLU) entity 
or intent label targets.

• <speech> I want a flight to Delhi from Chennai that makes a stop in Mumbai
• <SLU> Transcript + Intent label: I want a flight to Delhi from Chennai that makes a stop in Mumbai 

INT-FLIGHT
• <SLU> Transcript + Entity labels: I want a flight to DELHI B-toloc.cityname from CHENNAI B-

fromloc.cityname that makes a stop in MUMBAI B-stoploc.cityname
• <SLU> Entity labels only: DELHI B-toloc.cityname CHENNAI B-fromloc.cityname MUMBAI B-

stoploc.cityname
• <SLU> Intent label only: INT-FLIGHT

• Approach the training of SLU models as a kind of ASR customization process
• Start from a pre-trained automatic speech recognition (ASR) system, followed by an SLU 

adaptation step
• SLU scenarios

• a case where verbatim transcripts are available,
• a constrained case where the only available annotations are SLU labels and their values, 
• a more restrictive case where transcripts are available but not corresponding audio.

SLU as an ASR customization process



FULL - Speech data is available with transcripts annotated with various SLU labels

(1) Transcript: i want a flight to Delhi from Chennai that makes a stop in Mumbai

(2) Transcript + Entity labels: I want a flight to DELHI B-toloc.cityname from CHENNAI 
B-fromloc.cityname that makes a stop in MUMBAI B-stoploc.cityname

(3) Transcript + Intent label: i want a flight to Delhi from Chennai that makes a stop in 
Mumbai INT-FLIGHT

Leveraging pre-trained ASR networks



General purpose ASR data
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Leveraging pre-trained ASR networks



How important is have a pre-trained ASR model? How accurate should the pretrained model be?

Leveraging pre-trained ASR networks



Can we use what we learnt for SLU?
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AUDIO - Audio recordings are available, but the annotations are just SLU entity 
label/value pairs and intents

I want a flight to Delhi from Chennai that makes a stop in Mumbai

(1) Entities in spoken order: DELHI B-toloc.cityname CHENNAI B-fromloc.cityname
MUMBAI B-stoploc.cityname

(2) Entities in alphabetic order: CHENNAI B-fromloc.cityname MUMBAI B-
stoploc.cityname DELHI B-toloc.cityname

(3) Intent label only: INT-FLIGHT

Limited labels
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Can we use what we learnt for SLU?
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Features and data augmentation

TEXT - Transcripts with SLU annotations are available, but the corresponding human 
speech recordings are not, due to privacy restrictions or bootstrapping from text chat 
data.

(1) Transcript + Entity labels: I want a flight to DELHI B-toloc.cityname from CHENNAI 
B-fromloc.cityname that makes a stop in MUMBAI B-stoploc.cityname

(2) Transcript + Intent label: I want a flight to Delhi from Chennai that makes a stop in 
Mumbai INT-FLIGHT



Features and data augmentation
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Features and data augmentation



Features and data augmentation
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Features and data augmentation
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Features and data augmentation

Benefits of pre-training, auxiliary tasks and data driven features 
for Entity and Intent Recognition on ATIS



Can we use what we learnt for SLU?
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What next? Multilingual SLU
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Conclusion

• Discussed the E2E SLU task and showed how various E2E SLU models are 
trained in a very similar fashion to low-resource multilingual models with
• Pre-trained models

• Data driven features

• Multi-task learning

• Limited transcripts

• Propose a focus on multilingual E2E SLU and related tasks as a related 
task with significant value
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