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The Low-resource ASR Problem

Acoustic models for state-of-the-art speech recognition systems are
typically trained on several hundred hours of task specific training data,

or more. However, in low resource scenarios often only a few tens of
hours of annotated training data are available.

How can we effectively build models in low resource settings?



The Low-resource ASR Problem

How have we effectively built E2E ASR models in low resource settings?
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What do we do with ASR transcripts?
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What next? End-to-end SLU
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The SLU task as a low resource task

* Directly process speech to produce spoken language understanding (SLU)
entity or intent label targets.

* <speech> | want a flight to Delhi from Chennai that makes a stop in Mumbai

e <SLU> Transcript + Intent label: | want a flight to Delhi from Chennai that makes a stop in
Mumbai INT-FLIGHT

* <SLU> Transcript + Entity labels: | want a flight to DELHI B-toloc.cityname from CHENNAI B-
fromloc.cityname that makes a stop in MUMBAI B-stoploc.cityname

* <SLU> Entity labels only: DELHI B-toloc.cityname CHENNAI B-fromloc.cityname MUMBAI B-
stoploc.cityname

* <SLU> Intent label only: INT-FLIGHT

e SLU as a low resource task

* SLU domain specific data is typically very limited — few tens of hours
* Data labelled with SLU intents and labels are also very limited.



Can we use what we learnt, for SLU?
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Can we use what we learnt, for SLU?
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Leveraging pre-trained networks
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Fig. 1. A S2I system with pre-trained ASR



Leveraging pre-trained networks
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Fig. 2. Joint-training of the S2I system with text embeddings



Leveraging pre-trained networks

Method IntAcc
E2E S2I system trained on 2hTrainset 82.2%

Joint training tying speech/text embeddings 84.7%

E2E S2I system trained on 20hTrainset 89.8%

End-to-End models using extra text-to-intent data to recover
accuracy lost by switching from 20hTrainset to 2hTrainset.
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Leveraging pre-trained networks

“Turnon ___ ™ ’ Y 000
the lights™ o A |
Grnurh:lngﬂh BERT Encoder }\_Er_nnadumgs i
“Borne on B ™ T
lights™ b ~l GTIASR
AEF:ET‘ i i Prediction £ =
ranscript ! h, J Combined
Phoneme Module Ward Module E — Shﬂl:id ! ASR-Audio |
II_,r . = ! Classifier " Prediction :
| 1 %
el Audio URIR oy S
R, Pradiction
.ll Il"' ' TRTTRTTN ~ Audie | - . )
Embeddings |
\_ConviD GRU GRU | :“ i
Common
Embedding Space
-
Speak or Chat with Me:

End-to-End Spoken Language Understanding System with Flexible Inputs

Sujeong Cha'*, Wangrui Hou, Hyun Jung"*, My Phung"*, Michael Picheny",

Hong-Kwang Kuo®?, Samuel Thomas®, Edmilson Morais®

'New York University, USA
2IBM Research Al, USA *IBM Research Al, Brazil



SLU as an ASR customization process

* Directly process speech to produce spoken language understanding (SLU) entity
or intent label targets.
* <speech> | want a flight to Delhi from Chennai that makes a stop in Mumbai

e <SLU> Transcript + Intent label: | want a flight to Delhi from Chennai that makes a stop in Mumbai
INT-FLIGHT

* <SLU> Transcript + Entity labels: | want a flight to DELHI B-toloc.cityname from CHENNAI B-
fromloc.cityname that makes a stop in MUMBAI B-stoploc.cityname

* <SLU> Entity labels only: DELHI B-toloc.cityname CHENNAI B-fromloc.cityname MUMBAI B-
stoploc.cityname

e <SLU> Intent label only: INT-FLIGHT

e Approach the training of SLU models as a kind of ASR customization process

 Start from a pre-trained automatic speech recognition (ASR) system, followed by an SLU
adaptation step
* SLU scenarios
* acase where verbatim transcripts are available,
* aconstrained case where the only available annotations are SLU labels and their values,
* a more restrictive case where transcripts are available but not corresponding audio.



Leveraging pre-trained ASR networks

FULL - Speech data is available with transcripts annotated with various SLU labels

(1) Transcript: i want a flight to Delhi from Chennai that makes a stop in Mumbai

(2) Transcript + Entity labels: | want a flight to DELHI from CHENNAI
that makes a stop in MUMBAI

(3) 'I(/rlanscbript + Intent label: i want a flight to Delhi from Chennai that makes a stop in
umbai



Leveraging pre-trained ASR networks
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Leveraging pre-trained ASR networks

How important is have a pre-trained ASR model? How accurate should the pretrained model be?

Table 1: ASR WER performance before and after SLU adaptation.

P d _ ] p o Table 2: SLU performance with various pre-trained models.
enotes experiments focused on pre-training.

PT. ATIS CC
PT. Data (Hrs.) ATIS (WER %) Data (Hrs.) Ent. (F1) Int. (Acc%) Int. (Acc%)
[1P] 0 14.8 [5P] 0 79.7 83.5 65.8
[2P] 64 383 = 2.2 [6P] 64 92.1 95.4 86.9
[3P] 160 18.6 — 1.8 [7P] 160 93.2 94.7 87.4
[4P] 300 13.1 = 1.6 [SP] 300 93.2 94.9 87.4

RNN TRANSDUCER MODELS FOR SPOKEN LANGUAGE UNDERSTANDING

Samuel Thomas, Hong-Kwang J. Kuo, George Saon, Zoltdn Tiiske,
Brian Kingsbury, Gakuto Kurata, Zvi Kons, Ron Hoory
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Can we use what we learnt for SLU?

End-to-end Spoken | L ITITTTT i
Speech — Language —> |ntent
Understanding

\ 4

Input features Neural Network Layers Output labels

Data-driven features Pre-trained network layers Multitask learning

|-

AM-FE

!

\

| |l '"1":
© v



Limited labels

AUDIO - Audio recordings are available, but the annotations are just SLU entity
label/value pairs and intents

| want a flight to Delhi from Chennai that makes a stop in Mumbai

(1) Entities in spoken order: DELHI CHENNAI
MUMBAI

(2) Entitiesin aIphabe[t)iELoHrlder: CHENNAI MUMBAI

(3) Intent label only:



Limited labels
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Limited labels
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Figure 1: Attention plots for the utterance “I would like to make
a reservation for a flight to Denver from Philadelphia on this
coming Sunday”: (a) ASR; (b) SLU in spoken order; (c) SLU in
alphabetic order.



Limited labels

Training Data Adapt CTC Attention
1B Full transcripts Y 85.5 92.0
2B| Full transcripts N 79.6 91.3
3B] Entities, spoken order Y 88.6 91.2
4B| Entities, spoken order N 86.5 89.6
5B] Entities, alphabetic order Y 73.8 88.8
6B] Entities, alphabetic order N 68.5 87.7

ATIS bag-of-entities slot filling F1 score for speech
input with additive street noise (5dB SNR)

End-to-End Spoken Language Understanding Without Full Transcripts

Hong-Kwang J. Kuo, Zoltdan Tiiske, Samuel Thomas, Yinghui Huang™, Kartik Audhkhasi;
Brian Kingsbury, Gakuto Kurata, Zvi Kons, Ron Hoory, and Luis Lastras
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Can we use what we learnt for SLU?
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Features and data augmentation

TEXT - Transcripts with SLU annotations are available, but the corresponding human

épeech recordings are not, due to privacy restrictions or bootstrapping from text chat
ata.

(1) Transcript + Entity labels: | want a flight to DELHI from CHENNAI
that makes a stop in MUMBAI

(2) Transct:)ript + Intent label: | want a flight to Delhi from Chennai that makes a stop in
Mumbal



Features and data augmentation
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Features and data augmentation

Method IntAcc
E2E S2I system trained on 2hTrainset 82.2%

Joint training tying speech/text embeddings 84.7%
Adding synthetic multi-speaker TTS speech 87.8%
Joint training + adding synthetic speech 88.3%

E2E S2I system trained on 20hTrainset 89.8%

End-to-End models using extra text-to-intent data to recover
accuracy lost by switching from 20hTrainset to 2hTrainset.



Features and data augmentation
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Features and data augmentation
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Features and data augmentation

Number Pre-initialization Auxiliary tasks Entities (F1 score %) Intent (IER %)
Encoder Decoder S2T T2I&E | Filterbank Wav2vec Filterbank | Wav2vec
1 - - - - 34.4 76.6 14.0 6.8
2 - - - yes 53.0 83.6 13.0 4.8
3 - - yes - 75.1 89.1 8.5 3.9
4 - - yes yes 87.0 89.3 5.8 3.3
5 ATIS ATIS - - 88.1 90.0 3.5 3.4
6 ATIS ATIS yes yes 88.6 91.1 3.8 3.5
7 ATIS ATIS yes - 90.1 91.4 3.5 3.3
8 ATIS - yes yes 91.2 91.2 3.4 3.3
9 LibSp100h - yes yes 90.7 89.2 3.3 3.9
10 LibSp100h ATIS yes yes 91.1 90.0 3.3 3.0

Benefits of pre-training, auxiliary tasks and data driven features
for Entity and Intent Recognition on ATIS



Can we use what we learnt for SLU?
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What next? Multilingual SLU
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What next? Multilingual SLU

Multilingual
speech >

Language 1 specific
parameters

Shared
parameters
trained on all
languages

Language 2 specific
parameters

Shared
parameters
trained on all

languages

Language 3 specific
parameters

Language
. independent
intents



Conclusion

* Discussed the E2E SLU task and showed how various E2E SLU models are
trained in a very similar fashion to low-resource multilingual models with
* Pre-trained models
e Data driven features
* Multi-task learning
* Limited transcripts

* Propose a focus on multilingual E2E SLU and related tasks as a related
task with significant value
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