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Overview of today’s tutorial

• 5pm to 6pm: part I presentation by Shinji
– Introduction of end-to-end ASR and ESPnet

• 6pm to 6:30 pm: Q&A for part I and break
• 6:30pm to 7pm: part II presentation by Pengcheng
– Advanced techniques in ESPnet

• 7pm to 7:15 pm: part II espnet mucs recipe by 
Sathvik
– espnet mucs recipe, and demo

• 7:15pm to 7:30pm: summary and Q&A by Shinji
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About this presentation

• This is based on my personal experience
• I re-order or re-structure several existing materials based on a 

chronological order
• I’m assuming people have some end-to-end neural network 

knowledge



Timeline
Shinjiʼs personal experience for end-to-end 

speech processing

-2015
First 
impression

- No more 
conditional 
independence 
assumption

- DNN tool 
blossom

2016
Initial 
implementation

- CTC/attention 
hybrid

- Japanese e2e 
-> 
multilingual. 

2017
Open source

- share the 
knowhow

- Kaldi-style
- Jelinek 

workshop

2018
ASR+X

- TTS
- Speech 

translation

2019-
Improvement

- Transformer
- Open source

acceleration
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Noisy channel model (1970s-)



Noisy channel model (1970s-)
• Automatic Speech Recognition: Mapping physical signal sequence to linguistic symbol sequence

“Thatʼs another story”



argmax
!

𝑝(𝑊|𝑋)

Noisy channel model (1970s-)

𝑋: Speech sequence
𝑊: Text sequence



argmax
!

𝑝(𝑊|𝑋) = argmax
!

𝑝 𝑋 𝑊 𝑝(𝑊)
≈ argmax

!,#
𝑝 𝑋 𝐿,𝑊 𝑝(𝐿|𝑊)𝑝(𝑊)

• Speech recognition
– 𝑝 𝑋 𝐿 : Acoustic model (Hidden Markov model)
– 𝑝 𝐿 𝑊 : Lexicon
– 𝑝(𝑊): Language model (n-gram)

Noisy channel model (1970s-)
𝐿: Phoneme sequence
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𝑝 𝑋 𝑊 𝑝(𝑊)
≈ argmax

!,#
𝑝 𝑋 𝐿,𝑊 𝑝(𝐿|𝑊)𝑝(𝑊)

• Speech recognition
– 𝑝 𝑋 𝐿 : Acoustic model (Hidden Markov model)
– 𝑝 𝐿 𝑊 : Lexicon
– 𝑝(𝑊): Language model (n-gram)

Noisy channel model (1970s-)

• Factorization
• Conditional independence 

(Markov) assumptions



argmax
!

𝑝(𝑊|𝑋) = argmax
!

𝑝 𝑋 𝑊 𝑝(𝑊)

• Machine translation
– 𝑝 𝑋 𝑊 : Translation model
– 𝑝(𝑊): Language model

Noisy channel model (1970s-)
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!

𝑝 𝑋 𝑊 𝑝(𝑊)
≈ argmax

!,#
𝑝 𝑋 𝐿,𝑊 𝑝(𝐿|𝑊)𝑝(𝑊)

• Speech recognition
– 𝑝 𝑋 𝐿 : Acoustic model (Hidden Markov model)
– 𝑝 𝐿 𝑊 : Lexicon
– 𝑝(𝑊): Language model (n-gram)

• Continued 40 years

Noisy channel model (1970s-)



argmax
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𝑝(𝑊|𝑋) = argmax
!

𝑝 𝑋 𝑊 𝑝(𝑊)
≈ argmax

!,#
𝑝 𝑋 𝐿,𝑊 𝑝(𝐿|𝑊)𝑝(𝑊)

• Speech recognition
– 𝑝 𝑋 𝐿 : Acoustic model
– 𝑝 𝐿 𝑊 : Lexicon
– 𝑝(𝑊): Language model

• Continued 40 years

Noisy channel model (1970s-)

Big barrier:
noisy channel model

HMM
n-gram

etc.



However,
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“End-to-End” Processing
Using Sequence to Sequence

• Directly model 𝑝(𝑊|𝑋) with a single neural network
– Integrate acoustic 𝑝(𝑋|𝐿), lexicon 𝑝(𝐿|𝑊), and language 𝑝(𝑊) models

• Great success in neural machine translation
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End-to-end ASR (1)

Connectionist temporal classification (CTC) 
[Graves+ 2006, Graves+ 2014, Miao+ 2015]

• Use bidirectional RNNs or transformer to predict frame-based labels 
including blanks

• Find alignments between X and Y using dynamic programming

Forward-Backward
or Viterbi algorithm
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End-to-end ASR (1)

RNN transducer
[Graves+ 2006, Graves+ 2014, Miao+ 2015]

• Encoder to capture the acoustic information
• Label prediction similar to an LM
• Joint model to integrate both information

Joint 
model



End-to-end ASR (3)

Attention-based encoder decoder [Chorowski+ 2014, Chan+ 2015]

• Combine acoustic and language models in a single 
architecture
– Encoder: DNN part of acoustic model
– Decoder: language model
– Attention: HMM part of acoustic model
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First impression in -2015

• Attentio based encoder decoder

argmax
!

𝑝(𝑊|𝑋) = argmax
!

0
$

𝑝(𝑤$|𝑤%$ , 𝑋)

• No conditional independence assumption unlike HMM/CTC
– More precise seq-to-seq model
– This is what I have been struggling for 15 years!

• Attention mechanism allows too flexible alignments
– Hard to train the model from scratch
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Shinjiʼs personal experience for end-to-end 

speech processing

2016
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-> 
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Initial implementation in 2016

• Suyoun Kim (CMU), Takaaki 
Hori, John Hershey, and I 
started an E2E project at MERL 
with some interns

• First, we implemented both
– CTC
– Attention-based 

encoder/decoder
• We found some pros. and cons.
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End-to-end ASR (1)

Connectionist temporal classification (CTC) 
[Graves+ 2006, Graves+ 2014, Miao+ 2015]

• Use bidirectional RNNs to predict frame-based labels including blanks
• Find alignments between X and Y using dynamic programming
• Relying on conditional independence assumptions (similar to HMM)
• Output sequence is not well modeled (no language model)

Forward-Backward
or Viterbi algorithm
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End-to-end ASR (2)

Attention-based encoder decoder [Chorowski+ 2014, Chan+ 2015]

• Combine acoustic and language models in a single 
architecture
– Encoder: DNN part of acoustic model
– Decoder: language model
– Attention: HMM part of acoustic model

• No conditional independence
assumption unlike HMM/CTC
– More precise seq-to-seq model

• Attention mechanism allows
too flexible alignments
– Hard to train

the model
from scratch
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Input/output alignment by temporal attention
• Unlike CTC, attention model does 

not preserve order of inputs
• Our desired alignment in ASR task 

is monotonic
• Not regularized alignment makes 

the model hard to learn from 
scratch

HMM or CTC case

Example of distorted alignment

Attention model case

Input

Example of monotonic alignment

Input

O
ut
pu
t

O
ut
pu
t
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Shinjiʼs personal experience for end-to-end 

speech processing

2016
Initial 
implementation

- CTC/attention 
hybrid

- Japanese e2e 
-> 
multilingual. 
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How to solve this unstable attention issues

It was too unstable to move to the next step…
• We had a lot of ideas but those were pending due to that
• Probably we should try to use both benefits of CTC and attention

How to combine both?
• One possible solution: RNN transducer
• Try to find another solution
• Finally came up with a simple idea (or we decided to use this 

simple idea)
➡ Hybrid CTC/attention



Hybrid CTC/attention network [Kim+’17]

Multitask learning:
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More robust input/output alignment of attention

• Alignment of one selected utterance from CHiME4 task 
Attention Model

Our joint CTC/attention model

Epoch 1                       Epoch 3                        Epoch 5                     Epoch 7                        Epoch 9

Corrupted!

Monotonic!

Input

output

Faster convergence



Joint CTC/attention decoding [Hori+’17]
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Experimental Results

Models Dev. Eval

Attention model (baseline) 40.3 37.8
CTC-attention learning (MTL) 38.7 36.6
+ Joint decoding 35.5 33.9

Character Error Rate (%) in Mandarin Chinese Telephone Conversational (HKUST, 167 hours)

Models Task 1 Task 2 Task 3

Attention model (baseline) 11.4 7.9 9.0
CTC-attention learning (MTL) 10.5 7.6 8.3
+ Joint decoding 10.0 7.1 7.6

Character Error Rate (%) in Corpus of Spontaneous Japanese (CSJ, 581 hours)



Example of recovering insertion errors (HKUST)
id: (20040717_152947_A010409_B010408-A-057045-057837)
Reference
但是如果你想想如果回到了过去你如果带着这个现在的记忆是不是很痛苦啊

Hybrid CTC/attention (w/o joint decoding)
Scores: (#Correctness #Substitution #Deletion #Insertion) 28 2 3 45
但是如果你想想如果回到了过去你如果带着这个现在的节如果你想想如果回到了过去你如
果带着这个现在的节如果你想想如果回到了过去你如果带着这个现在的机是不是很・・・

w/ Joint decoding
Scores: (#Correctness #Substitution #Deletion #Insertion) 31 1 1 0
HYP: 但是如果你想想如果回到了过去你如果带着这个现在的・机是不是很痛苦啊



Example of recovering deletion errors (CSJ)
id: (A01F0001_0844951_0854386)
Reference
ま た え 飛 行 時 の エ コ ー ロ ケ ー シ ョ ン 機 能 を よ り 詳 細 に 解 明 す る 為 に 超 小 型 マ イ
ク ロ ホ ン お よ び 生 体 ア ン プ を コ ウ モ リ に 搭 載 す る こ と を 考 え て お り ま す そ う す
る こ と に よ っ て

Hybrid CTC/attention (w/o joint decoding)
Scores: (#Correctness #Substitution #Deletion #Insertion) 30 0 47 0
ま た え 飛 行 時 の エ コ ー ロ ケ ー シ ョ ン 機 能 を よ り 詳 細 に 解 明 す る

為 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ に ・ ・ ・

w/ Joint decoding
Scores: (#Correctness #Substitution #Deletion #Insertion) 67 9 1 0
ま た え 飛 行 時 の エ コ ー ロ ケ ー シ ョ ン 機 能 を よ り 詳 細 に 解 明 す る 為 に 長 国 型 マ イ
ク ロ ホ ン お ・ い く 声 単 位 方 を コ ウ モ リ に 登 載 す る こ と を 考 え て お り ま す そ う す
る こ と に よ っ て



Discussions

• Hybrid CTC/aRenSon-based end-to-end speech recogniSon
– MulE-task learning during training
– Joint decoding during recogniEon
➡Make use of both benefits, completely solve alignment issues

• Now we have a good end-to-end ASR tool
➡ Apply several challenging ASR issues

• NOTE: This can be solved by large amounts of training data and a 
lot of tuning. This is one soluSon (but quite academia friendly)



FAQ

• How to debug attention-
based encoder/decoder?

• Please check
Attention pattern!
Learning curves!

• It gives you a lot of intuitive 
information!
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Speech recognition pipeline

Feature 
extraction

“I want to go to
Johns Hopkins campus”

Acoustic 
modeling Lexicon Language 

modeling

• Require a lot of development for an acoustic model, a pronunciation 
lexicon, a language model, and finite-state-transducer decoding 

• Require linguistic resources
• Difficult to build ASR systems for non-experts



Speech recognition pipeline

Feature 
extraction

“I want to go to
Johns Hopkins campus”

Acoustic 
modeling Lexicon Language 

modeling

• Require a lot of development for an acoustic model, a pronunciation 
lexicon, a language model, and finite-state-transducer decoding 

• Require linguistic resources
• Difficult to build ASR systems for non-experts

“I want to go to
Johns Hopkins campus”

Language 
modeling

𝑝(𝑊)

A AH
A'S     EY Z
A(2)    EY

A.      EY
A.'S    EY Z
A.S     EY Z
AAA     T R IH P AH L EY
AABERG  AA B ER G

AACHEN  AA K AH N
AACHENER        AA K AH N ER
AAKER   AA K ER
AALSETH AA L S EH TH
AAMODT  AA M AH T

AANCOR  AA N K AO R
AARDEMA AA R D EH M AH
AARDVARK        AA R D V AA R K
AARON   EH R AH N
AARON'S EH R AH N Z

AARONS  EH R AH N Z
… １００

K~1M words!

Pronunciation lexion



Speech recognition pipeline

Feature 
extraction

Acoustic 
modeling Lexicon

• Require a lot of development for an acoustic model, a pronunciation 
lexicon, a language model, and finite-state-transducer decoding 

• Require linguistic resources
• Difficult to build ASR systems for non-experts

“I want to go to
Johns Hopkins campus”

Language 
modeling



From pipeline to integrated architecture

• Train a deep network that directly maps speech signal to the target letter/word sequence
• Greatly simplify the complicated model-building/decoding process
• Easy to build ASR systems for new tasks without expert knowledge (Example by Sathvik)
• Potential to outperform conventional ASR by optimizing the entire network with a single 

objective function

“I want to go to
Johns Hopkins campus”

End-to-End Neural Network



Japanese is not an ASR friendly language
“二つ目の要因は計算機資源・音声データの増加及びKaldiやTensorflowなどの

オープンソースソフトウェアの普及である”

• No word boundary
• Mix of 4 scripts (Hiragana, Katakana, Kanji, Roman alphabet)
• Frequent many to many pronunciations

– A lot of homonym (same pronunciations but different chars.)
– A lot of multiple pronunciations for each char

• Very different phoneme lengths per character
– “ン”: /n/, …. “侍”: /s/ /a/ /m/ /u/ /r/ /a/ /i/ (from 1 to 7 phonemes per character!)

We need very accurate tokenizer (chasen, mecab) to solve the above problems 
jointly
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My aUempt (2016)

• Japanese NLP/ASR: always go through a tokenizer
– Additional tool
– Require a dictionary

• My goal: remove the tokenizer 
• Directly predict Japanese text only from audio
• Surprisingly working very well. Our initial attempt reached Kaldi 

state-of-the-art with a tokenizer (CER~10% (2016) cf. ~5% (2020)) 
• This was the first Japanese ASR without using tokenizer (one of my 

dreams) 
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• Directly predict Japanese text only from audio
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dreams) 



Multilingual e2e ASR

• Given the Japanese ASR experience, I thought that e2e ASR can 
handle mixed languages with a single architecture
➡Mul>lingual e2e ASR (2017)
➡Mul>lingual code-switching e2e ASR (2018)



Speech recogniVon pipeline

Feature 
extraction

“I want to go to
Johns Hopkins campus”

Acoustic 
modeling Lexicon Language 

modeling

G OW T UW

“go to”
“go two”
“go too”
“goes to”
“goes two”
“goes too”

G OW Z T UW

𝑝(𝑋|𝐿) 𝑝(𝐿|𝑊) 𝑝(𝑊)



Multilingual speech recognition pipeline

Feature 
extraction

“I want to go to
Johns Hopkins campus”

Acoustic 
modeling Lexicon Language 

modeling

Feature 
extraction

“ジョンズホプキンスの
キャンパスに行きたいです”

Acoustic 
modeling Lexicon Language 

modeling

Feature 
extraction

“Ich möchte gehen 
Johns Hopkins Campus”

Acoustic 
modeling Lexicon Language 

modeling

Language 
detector

𝑝(𝑋|𝐿) 𝑝(𝐿|𝑊) 𝑝(𝑊)



Multilingual speech recognition pipeline

“I want to go to
Johns Hopkins campus”

“ジョンズホプキンスの
キャンパスに行きたいです”

“Ich möchte gehen 
Johns Hopkins Campus”

End-to-End Neural Network



Mul$-lingual end-to-end speech recogni$on
[Watanabe+’17, Seki+’18]

• Learn a single model with multi-language data (10 languages)
• Integrates language identification and 10-language speech recognition systems
• No pronunciation lexicons

Include all language characters
and language ID for final softmax
to accept all target languages





ASR performance for 10 languages

• Comparison with language dependent systems
• Language-independent single end-to-end ASR works well!
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你好
Hello
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Hallo
Привет
Olá



Language recognition performance



ASR performance for low-resource 10 languages

• Comparison with language dependent systems
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Some MUCS languages (e.g., Tamil) is included in this work



ASR performance for low-resource 10 languages

• Comparison with language dependent systems
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~100 languages with CMU Wilderness Multilingual Speech Dataset
[Adams+(2019)]



Actually it was one of the easiest studies in my work

Q. How many people were involved in the development?
A. 1 person

Q. How long did it take to build a system?
A. Totally ~1 or 2 day efforts with bash and python scripDng (no change of main e2e ASR 

source code), then I waited 10 days to finish training

Q. What kind of linguisSc knowledge did you require?
A. Unicode (because python2 Unicode treatment is tricky. If I used python3, I would not 

even have to consider it)

ASRU’17 best paper candidate (not best paper L)



Multi-lingual ASR

ID csj-eval:s00m0070-0242356-0244956:voxforge-et-fr:mirage59-20120206-njp-fr-sb-570

REF: [JP] 日本でもニュースになったと思いますが [FR] le conseil supérieur de la magistrature
est présidé par le président de la république

ASR: [JP] 日本でもニュースになったと思いますが [FR] le conseil supérieur de la magistrature
est présidée par le président de la république

ID voxforge-et-pt:insinfo-20120622-orb-209:voxforge-et-de:guenter-20140127-usn-de5-069:csj-
eval:a01m0110-0243648-0247512

REF: [PT] segunda feira [DE] das gilt natürlich auch für bestehende verträge [JP] えー同一人物に
よる異なるメッセージを示しております

ASR: [PT] segunda feira [DE] das gilt natürlich auch für bestehende verträge [JP] えー同一人物に
よる異なるメッセージを示しております

ID a04m0051_0.352274410405

REF: [DE] bisher sind diese personen rundherum versorgt worden [EN] u. s. exports rose in the 
month but not nearly as much as imports 

ASR: [DE] bisher sind diese personen rundherum versorgt worden [EN] u. s. exports rose in the 
month but not nearly as much as imports

(Supporting 10 languages: CN, EN, JP, DE, ES, FR, IT, NL, RU, PT)
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ESPnet: End-to-end speech processing toolkit

Shinji Watanabe
Center for Language and Speech Processing

Johns Hopkins University

Joint work with Takaaki Hori , Shigeki Karita, Tomoki 
Hayashi, Jiro Nishitoba, Yuya Unno, Nelson Enrique 

Yalta Soplin, Jahn Heymann, Matthew Wiesner, Nanxin
Chen, Adithya Renduchintala, Tsubasa Ochiai, 

and more and more



ESPnet

• Open source (Apache2.0) end-to-end speech processing toolkit developed at Frederick 
Jelinek Memorial Summer Workshop 2018
• >3000 GitHub stars, ~100 contributors
• Major concept

Reproducible end-to-end speech processing studies for speech researchers

Keep simplicity

• Follows the Kaldi style
• Data processing, feature extraction/format
• Recipes to provide a complete setup for speech processing experiments

I personally didn’t like 
pre-training fine-tuning 
strategies (but I changed 
my mind)



Functionalities

• Kaldi style data preprocessing
1) fairly comparable to the performance obtained by Kaldi hybrid DNN systems
2) easily porting the Kaldi recipe to the ESPnet recipe (Part II by Pengcheng and Sathvik covers more examples)

• Attention-based encoder-decoder
• Subsampled BLSTM and/or VGG-like encoder and location-based attention (+10 attentions)
• beam search decoding

• CTC
• WarpCTC, beam search (label-synchronous) decoding

• Hybrid CTC/attention
• Multitask learning
• Joint decoding with label-synchronous hybrid CTC/attention decoding (solve monotonic alignment issues)

• RNN transducder
• Warptransducer, beam search (label-synchronous) decoding

• Use of language models
• Combination of RNNLM/n-gram trained with external text data (shallow fusion)

• Part II (by Pengcheng) covers more concrete descriptions about the recipe and new functions



Timeline
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ASR+X

•This toolkit (ASR+X) covers the following topics complementally

•Why we can support such wide-ranges of applications?

ASR

TTSSpeech translation

Speech enhancement
74



High-level benefit of e2e neural network
- Unified views of multiple speech processing 

applications based on end-to-end neural architecture
- Integration of these applications in a single network
- Implementation of such applications and their 

integrations based on an open source toolkit like 
ESPnet, nemo, espresso, ctc++, fairseq, opennmtpy, 
lingvo, speechbraing, etc. etc., in an unified manner



Automatic speech recognition (ASR)
• Mapping speech sequence to character sequence

“Thatʼs another story”

ASR



Speech to text translation (ST)
• Mapping speech sequence in a source language to 

character sequence in a target language

“Das ist eine andere 
Geschichte”Thatʼs 

another 
story

N=31

ST



Text to speech (TTS)
• Mapping character sequence to speech sequence

“Thatʼs another story”

TTS



Speech enhancement (SE)
• Mapping noisy speech sequence to clean speech 

sequence
SE



All of the problems



Unified view with sequence to sequence
- All the above problems: find a mapping function from 

sequence to sequence (unification)

• ASR: X = Speech, Y = Text
• TTS: X = Text, Y = Speech
• ST: X = Speech (EN), Y = Text (JP)
• Speech Enhancement: X = Noisy speech, Y = Clean speech

- Mapping function
- Sequence to sequence (seq2seq) function
- ASR as an example



Seq2seq end-to-end ASR

Mapping seq2seq function
1. Connectionist temporal classification (CTC)
2. Attention-based encoder decoder
3. Joint CTC/attention (Joint C/A)
4. RNN transducer (RNN-T)
5. Transformer



Unified view

- Target speech processing problems: find a mapping 
function from sequence to sequence (unification)

• ASR: X = Speech, Y = Text
• TTS: X = Text, Y = Speech
• ...

- Mapping function (f)
- Attention based encoder decoder
- Transformer
- ...



Seq2seq TTS (e.g., Tacotron2) [Shen+ 2018] 

- Use seq2seq generate a spectrogram feature sequence
- We can use either a5en6on-based encoder decoder or 

transformer



Unified view → Unified software design

We design a new speech processing toolkit based on 



We design a new speech processing toolkit based on 

Unified view → Unified software design

86

ESPnet: End-to-end 
speech processing toolkit

Interspeech 2019 tutorial: Advanced methods for neural end-to-end speech processing 09/15/2019



We design a new speech processing toolkit based on 

Unified view → Unified software design

87

ESPnet: End-to-end 
speech processing toolkit

Interspeech 2019 tutorial: Advanced methods for neural end-to-end speech processing 09/15/2019

Speech
Text
English Speech
Noisy Speech

Text
Speech
German Text
Clean Speech



We design a new speech processing toolkit based on 

Unified view → Unified software design

88

ESPnet: End-to-end 
speech processing toolkitCTC

Attention
Joint C/A
RNN-T
Transformer



We design a new speech processing toolkit based on 

Unified view → Unified software design

89

ESPnet: End-to-end 
speech processing toolkit

- Many speech processing applications can be unified based on seq2seq
- Again, Espresso, Nemo, Fairseq, Lingvo, SpeechBrain and other toolkits 

also fully make use of these functions.
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Examples of integrations



Multichannel end-to-end ASR system

Dereverberation + beamforming + ASR
p Multichannel end-to-end ASR framework
－ integrates entire process of speech dereverberation (SD), beamforming (SB)and
－ speech recognition (SR), by single neural-network-based architecture

↓
SD : DNN-based weighted prediction error (DNN-WPE) [Kinoshita et al., 2016]

SB : Mask-based neural beamformer [Erdogan et al., 2016]
SR : Attention-based encoder-decoder network [Chorowski et al., 2014]

DNN WPE Mask-based neural 
beamformer

Anenoon-based 
encoder decoder network

Dereverberation Beamformer DecoderEncoder Attention

Back Propagation

https://github.co
m/nttcslab-
sp/dnn_wpe, 
[Subramanian’19]

92

https://github.com/nttcslab-sp/dnn_wpe


Beamforming + separation + ASR
[Xuankai Chang., 2019, ASRU]

q Multi-channel (MI) multi-speaker (MO) end-to-end architecture
• Extend our previous model to multispeaker end-to-end network
• Integrate the beamforming-based speech enhancement and separation networks 

inside the neural network

We call it MIMO speech

Back Propagation
93

Multi-channel multi-speaker end-to-end ASR

Speech separation and enhancement

Bemformer

Speech recogniLon

Enc

Enc

Att-
Dec

Att-
Dec



ASR + TTS feedback loop
àUnpaired data training

Only audio data to train both ASR and TTS
We do not need a pair data!!!

Back Propaga9on

94

ASR TTS

x
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2019-
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- Transformer
- Open source
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Experiments (~ 1000 hours)
Librispeech (Audio book)

• Very impressive results by Google

Toolkit dev_clean dev_other test_clean test_other
Facebook wav2letter++ 3.1 10.1 3.4 11.2
RWTH RASR 2.9 8.8 3.1 9.8
Nvidia Jasper 2.6 7.6 2.8 7.8
Google SpecAug. N/A N/A 2.5 5.8

96



Experiments (~ 1000 hours)
Librispeech

• Reached Google’s best performance by community-driven 
efforts (on September 2019)

Toolkit dev_clean dev_other test_clean test_other
Facebook wav2letter++ 3.1 10.1 3.4 11.2
RWTH RASR 2.9 8.8 3.1 9.8
Nvidia Jasper 2.6 7.6 2.8 7.8
Google SpecAug. N/A N/A 2.5 5.8
ESPnet 2.2 5.6 2.6 5.7
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Good example of “Collapetition”
= Collaboration + Competition

101



Experiments (~ 1000 hours)
Librispeech

Toolkit dev_clean dev_other test_clean test_other
Facebook wav2letter++ 3.1 10.1 3.4 11.2
RWTH RASR 2.9 8.8 3.1 9.8
Nvidia Jasper 2.6 7.6 2.8 7.8
Google SpecAug. N/A N/A 2.5 5.8
ESPnet 2.2 5.6 2.6 5.7
MS Semantic Mask (ESPnet) 2.1 5.3 2.4 5.4
Facebook wav2letter 
Transformer

2.1 5.3 2.3 5.6

102• Just after a few months… And more results in Part II by Pengcheng



Transformer is powerful for multilingual ASR
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Watanabe et al. RNN Our RNN Our Transformer

One of the most 
stable and  biggest 
gains compared with 
other multilingual 
ASR techniques



FAQ (before transformer)

• How to debug attention-
based encoder/decoder?

• Please check
Attention pattern!
Learning curves!

• It gives you a lot of intuitive 
information!



FAQ (after transformer)

• How to debug attention-based 
encoder/decoder?

• Please check
Attention pattern (including 

self attention)!
Learning curves!

• It gives you a lot of intuitive 
information!

• Tune optimizers!



Timeline
Shinjiʼs personal experience for end-to-end 

speech processing

-2015
First 
impression

- No more 
conditional 
independence 
assumption

- DNN tool 
blossom

2016
Initial 
implementation

- CTC/attention 
hybrid

- Japanese e2e 
-> 
multilingual. 

2017
Open source

- share the 
knowhow

- Kaldi-style
- Jelinek 

workshop

2018
ASR+X

- TTS
- Speech 

translation
- Speech 

enhancement 
+ ASR

2019
Improvement

- Transformer
- Open source

acceleration

0106

2020



What’s next?

•Non autoregressive ASR
•Time-domain processing (real end-to-end including feature 
extraction and speech enhancement)
•Differentiable WFST

•New architecture
•Conformer

•Self-supervised training
•Wav2vec2, HuBert

By Pengcheng in Part II



Overview of today’s tutorial

• 5pm to 6pm: part I presentation by Shinji
– Introduction of end-to-end ASR and ESPnet

• 6pm to 6:30 pm: Q&A for part I and break
• 6:30pm to 7pm: part II presentation by Pengcheng
– Advanced techniques in ESPnet

• 7pm to 7:15 pm: part II espnet mucs recipe by 
Sathvik
– espnet mucs recipe, and demo

• 7:15pm to 7:30pm: summary and Q&A by Shinji



Introduction of ESPnet, End-to-End Speech 
Processing Toolkit

Shinji Watanabe
Carnegie Mellon University

Pengcheng Guo
Northwestern Polytechnical University

Sathvik Udupa
Indian Institute of Science 

MUCS 2021: MUltilingual and Code-Switching ASR Challenges for Low Resource Indian Languages
12-13 August 2021



Timeline of ESPnet

-2016
Initial 
implementation

- CTC/attention 
hybrid

- Japanese e2e -
> multilingual. 

2017
Open source

- share the 
knowhow

- Kaldi-style
- Jelinek 

workshop

2018
ASR+X

- TTS

- Speech 
translation

- Speech 
enhancement + 
ASR

2019
Improvement

- Transformer

- Open-source 
acceleration

2020-
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Timeline of ESPnet

-2016
Initial 
implementation

- CTC/attention 
hybrid

- Japanese e2e -
> multilingual. 

2017
Open source

- share the 
knowhow

- Kaldi-style
- Jelinek 

workshop

2018
ASR+X

- TTS

- Speech 
translation

- Speech 
enhancement + 
ASR

2019
Improvement

- Transformer

- Open-source 
acceleration

2020-
More intriguing
Ideas

- Conformer

- Self-supervised 
pretrained models

0111



Conformer: Covolution-augmented Transformer 
[Gulati+ 2020]

• Combine the multi-headed self-attention layer with the 
convolutional layer in the encoder

LayerNorm 

Multihead Self-
Attention 

LayerNorm 

Convolution 

Positionwise Feed-
Forardward 

LayerNorm 

Positionwise Feed-
Forardward 

LayerNorm 

+

+

+

+

Conformer Block

Multiheaded Self-
Attention Module

Multi-Layer 
Convolution Module

Positionwise Feed-
Forward Modules

Relative Positional 
Embedding



• Multiheaded self-attention module
– Aim to learn the global context

Conformer: Covolution-augmented Transformer 
[Gulati+ 2020]

MHSA 𝐐,𝐊, 𝐕 = Concat(head!,…,head")𝐖#

head𝒊 = Attention 𝐐%, 𝐊%, 𝐕% LayerNorm 

Multihead Self-
Attention 

LayerNorm 

Convolution 

Positionwise Feed-
Forardward 

LayerNorm 

Positionwise Feed-
Forardward 

LayerNorm 

+

+

+

+

Conformer Block



• Multi-layer convolution module
– Efficiently capture the local correlations

Conformer: Covolution-augmented Transformer 
[Gulati+ 2020]

LayerNorm 

Multihead Self-
Attention 

LayerNorm 

Convolution 

Positionwise Feed-
Forardward 

LayerNorm 

Positionwise Feed-
Forardward 

LayerNorm 

+

+

+

+

Conformer Block

1D Pointwise Conv

GLU Func

1D Depthwise Conv

BatchNorm

Swish Func

1D Pointwise Conv

Dropout 

Convolution Module



• Pointwise feed-forward module
– Consists of two linear transformations 
with a ReLU activation in the between.

Conformer: Covolution-augmented Transformer 
[Gulati+ 2020]

LayerNorm 

Multihead Self-
Attention 

LayerNorm 

Convolution 

Positionwise Feed-
Forardward 

LayerNorm 

Positionwise Feed-
Forardward 

LayerNorm 

+

+

+

+

Conformer Block

FFN 𝐗 = 𝐖&ReLU 𝐖!𝐗 + 𝑏! + 𝑏&

Macaron-Net Style



• Initial implementation (Jun 2020)
– GLU activation takes 2 tensors for the element-wise product

• Increase the channel dimension?
• Use 2 different 1D Pointwise Conv layers?

– The usage of relative positional embeddings
• Share the hyper-parameters or not?

– Can’t reproduce Google’s results, etc.
• First Pull Request (Jul 2020)

How to Implement the Conformer in ESPnet



Conformer Model in ESPnet [Watanabe+ 2018, Guo+ 2020]

• Conformer Encoder + Transformer Decoder
– 😄 Efficiently capture both global and
local context in the encoder
– 😄 Very good performance on various
speech processing tasks (ASR, ST, TTS, etc.)
– 😓 Off-line, slow inference

ASR/ST: Subsample 
TTS: Pre-net 

SS: STFT 

Source Sequence

Conformer Encoder

ASR/ST: CTC 
SE: MSE 

ASR/ST: Embed 
TTS: Pre-net 

ASR/ST/TTS: 
Target Sequence

Transformer Decoder

ASR/ST: Linear (CE) 
TTS: Post-net 

ASR/ST: CE, CTC 
SS: MSE 

TTS: L1, L2, BCE 

Our Model



ASR Experiments (178 hours Mandarin task)
• Character Error Rate (%) on AISHELL-1 corpus

Models dev test
Kaldi Chain Model N/A 7.4
Tsinghua CTC-CAT N/A 6.3
Mobvoi U2 N/A 4.7
ESPnet Transformer 6.0 6.7
ESPnet Conformer 4.4 4.7

Achieve the state-of-art results (on October 2020)



ASR Experiments (960 hours English task)
• Word Error Rate (%) on Librispeech corpus

Toolkit dev_clean dev_other test_clean test_other
Kaldi Chain Model 3.9 10.4 4.3 10.8
Facebook wav2letter++ 3.1 10.1 3.4 11.2
RWTH RASR 2.9 8.8 3.1 9.8
Nvidia Jasper 2.6 7.6 2.8 7.8
Google SpecAug. N/A N/A 2.5 5.8
Google Conformer 2.1 4.3 1.9 3.9
ESPnet Conformer 1.9 4.9 2.1 4.9

Reached Google’s best performance.



ASR Performance boosted by Conformer [Guo+ 2020]

• ASR performance was improved on 14/17 corpora
• Show better results on the multi-speaker WSJ-2mix taskTable 1. CER/WER results on various open source ASR corpora. Both Transformer and Conformer models are implemented based on ESPnet

toolkit. ⇤ marks ESPnet2 results. † and ‡ indicate only w/ speed or only w/ SpecAugment, respectively. § denotes w/o any data augmentation.

Dataset Vocab Metric Evaluation Sets Transformer Conformer
AIDATATANG Char CER dev / test (†) 5.9 / 6.7 4.3 / 5.0

AISHELL-1 Char CER dev / test (†) 6.0 / 6.7 (*) 4.4 / 4.7
AISHELL-2 Char CER android / ios / mic (†) 8.9 / 7.5 / 8.6 7.6 / 6.8 / 7.4
AURORA4 Char WER dev 0330 (A / B / C / D) 3.3 / 6.0 / 4.5 / 10.6 4.3 / 6.0 / 5.4 / 9.3

CSJ Char CER eval{1, 2, 3} (⇤) 4.7 / 3.7 / 3.9 (⇤) 4.5 / 3.3 / 3.6
CHiME4 Char WER {dt05, et05} {simu, real} (†) 9.6 / 8.2 / 15.7 / 14.5 9.1 / 7.9 / 14.2 / 13.4

Fisher-CallHome BPE WER dev / dev2 / test / devtest / evltest 22.1 / 21.5 / 19.9 / 38.1 / 38.2 21.5 / 21.1 / 19.4 / 37.4 / 37.5
HKUST Char CER dev (†) 23.5 (†) 22.2

JSUT Char CER our split (†) 18.7 14.5
LibriSpeech BPE WER {dev, test} {clean, other} 2.1 / 5.3 / 2.5 / 5.5 1.9 / 4.9 / 2.1 / 4.9
REVERB Char WER et {near, far} (†) 13.1 / 15.4 (†) 10.5 / 13.9

Switchboard BPE WER eval2000 (callhm / swbd) 17.2 / 8.2 14.0 / 6.8
TEDLIUM2 BPE WER dev / test 9.3 / 8.1 8.6 / 7.2
TEDLIUM3 BPE WER dev / test 10.8 / 8.4 9.6 / 7.6

VoxForge Char CER our split (§) 9.4 / 9.1 (§) 8.7 / 8.2
WSJ BPE WER dev93/ eval92 (‡) 7.4 / 4.9 (‡) 7.7 / 5.3

WSJ-2mix Char WER tt (§) 12.6 (§) 11.7

Table 2. WER results on dev/test sets of low-resource language cor-
pora. BPE tokens are used as the output units.

Dataset Transformer Conformer
+ Data Augmentation

Yoloxóchitl-Mixtec 23.0 / 23.2 16.0 / 16.1
Puebla-Nahuat 27.9 / 26.0 23.5 / 21.7

Commonvoice-Czech 38.2 / 44.3 15.3 / 20.6
Commonvoice-Welsh 32.0 / 21.8 20.0 / 14.2

Commonvoice-Russian 22.0 / 27.3 6.9 / 8.5
Commonvoice-Italian 31.8 / 33.7 15.6 / 17.0
Commonvoice-Persian 8.5 / 10.2 1.4 / 2.1
Commonvoice-Polish 24.1 / 15.1 8.8 / 2.6

same data preparation procedure as in Kaldi [24]. Optionally, we
also use speed perturbation [25] at ratio 0.9, 1.0, 1.1 and SpecAug-
ment [26] for the data augmentation in some corpora.

For each corpus, the detail configurations of our Conformer
model are same as ESPnet Transformer recipes [27] (Enc =
12,Dec = 6, dff = 2048, H = 4, datt = 256). Particularly, the
number of attention heads and attention dimensions are different for
Librispeech (H = 8, datt = 512). The convolution subsampling
layer has 2-layer CNN with 256 channels, stride with 2, and kernel
size with 3. For different corpora, we train 20-100 epochs and av-
erage the last 10 best checkpoints as the final model. We tune the
learning rate coefficient (e.g., 1-10) and the kernel size of CONV
module (e.g., 5-31) on the corresponding development sets to obtain
the best results. Detail setups can be referred to ESPnet recipes3.

4.2. Results

Table 1 shows the character and word error rate (CER/WER) re-
sults on each corpus. It can be seen that Conformer model outper-
forms Transformer on 14/17 corpora in our experiments and even
achieves state-of-the-art results on several corpora. Instead of the
single-speaker speech, it also brings about 7% relative improvement
compared with Transformer on the multi-speaker WSJ-2mix data.
Besides, we also conduct experiments to investigate the general-
ization of Conformer model on low-resource language corpora, as

3https://github.com/espnet/espnet

Table 3. CER/WER results of pure CTC models. Vocabularies, er-
ror metrics and evaluations sets are same as Table 1. We only use
greedy-search without LM rescoring during the inference.

Dataset Transformer-CTC Conformer-CTC
CSJ 6.0 / 4.2 / 4.8 4.8 / 3.7 / 3.8

TEDLIUM2 16.7 / 16.6 9.3 / 8.7
VoxForge 14.0 / 14.1 9.2 / 8.4

WSJ 19.4 / 15.5 12.9 / 10.9

Table 4. CER results of different Transducer models on the dev/test
set of the VIVOS corpus. All experiments w/o data augmentation.

Model dev test
Transformer-Transducer 17.2 17.1
Conformer-Transducer 13.7 14.0

TDNN-Conformer-Transducer 11.6 13.1

shown in Table 2. Conformer achieves more than 15% relative im-
provements in all 8 different languages compared with Transformer.

Since our Conformer model uses the same decoder framework
as Transformer, the performance gains may come from the additional
local information provided by the CONV module. Thus, we study
the effects of the CONV module by training a pure CTC model or a
Transducer model with the Conformer encoder4. Table 3 summaries
the CER/WER results of two pure CTC models, while Table 4 shows
the CER results of different Transducer models. We use a single long
short-term memory (LSTM) layer decoder in all Transducer models.
Detail setups can be referred to ESPnet recipes.3. Both Conformer-
CTC and TDNN-Conformer-Transducer models show consistent im-
provement and the Conformer-CTC model even achieves competi-
tive results over Transformer with a decoder. From above results,
we can conclude that Conformer shows superior performance in var-
ious types of ASR corpora, even in the challenging far-field, mixed
speech, and low-resource language scenarios.

4More CTC and Transducer results on different corpora will be shown
in the ESPnet toolkit.



• Achieve more than 15% rel. improvement on low-resource 
language corpora

Table 1. CER/WER results on various open source ASR corpora. Both Transformer and Conformer models are implemented based on ESPnet
toolkit. ⇤ marks ESPnet2 results. † and ‡ indicate only w/ speed or only w/ SpecAugment, respectively. § denotes w/o any data augmentation.

Dataset Vocab Metric Evaluation Sets Transformer Conformer
AIDATATANG Char CER dev / test (†) 5.9 / 6.7 4.3 / 5.0

AISHELL-1 Char CER dev / test (†) 6.0 / 6.7 (*) 4.4 / 4.7
AISHELL-2 Char CER android / ios / mic (†) 8.9 / 7.5 / 8.6 7.6 / 6.8 / 7.4
AURORA4 Char WER dev 0330 (A / B / C / D) 3.3 / 6.0 / 4.5 / 10.6 4.3 / 6.0 / 5.4 / 9.3

CSJ Char CER eval{1, 2, 3} (⇤) 4.7 / 3.7 / 3.9 (⇤) 4.5 / 3.3 / 3.6
CHiME4 Char WER {dt05, et05} {simu, real} (†) 9.6 / 8.2 / 15.7 / 14.5 9.1 / 7.9 / 14.2 / 13.4

Fisher-CallHome BPE WER dev / dev2 / test / devtest / evltest 22.1 / 21.5 / 19.9 / 38.1 / 38.2 21.5 / 21.1 / 19.4 / 37.4 / 37.5
HKUST Char CER dev (†) 23.5 (†) 22.2

JSUT Char CER our split (†) 18.7 14.5
LibriSpeech BPE WER {dev, test} {clean, other} 2.1 / 5.3 / 2.5 / 5.5 1.9 / 4.9 / 2.1 / 4.9
REVERB Char WER et {near, far} (†) 13.1 / 15.4 (†) 10.5 / 13.9

Switchboard BPE WER eval2000 (callhm / swbd) 17.2 / 8.2 14.0 / 6.8
TEDLIUM2 BPE WER dev / test 9.3 / 8.1 8.6 / 7.2
TEDLIUM3 BPE WER dev / test 10.8 / 8.4 9.6 / 7.6

VoxForge Char CER our split (§) 9.4 / 9.1 (§) 8.7 / 8.2
WSJ BPE WER dev93/ eval92 (‡) 7.4 / 4.9 (‡) 7.7 / 5.3

WSJ-2mix Char WER tt (§) 12.6 (§) 11.7

Table 2. WER results on dev/test sets of low-resource language cor-
pora. BPE tokens are used as the output units.

Dataset Transformer Conformer
+ Data Augmentation

Yoloxóchitl-Mixtec 23.0 / 23.2 16.0 / 16.1
Puebla-Nahuat 27.9 / 26.0 23.5 / 21.7

Commonvoice-Czech 38.2 / 44.3 15.3 / 20.6
Commonvoice-Welsh 32.0 / 21.8 20.0 / 14.2

Commonvoice-Russian 22.0 / 27.3 6.9 / 8.5
Commonvoice-Italian 31.8 / 33.7 15.6 / 17.0
Commonvoice-Persian 8.5 / 10.2 1.4 / 2.1
Commonvoice-Polish 24.1 / 15.1 8.8 / 2.6

same data preparation procedure as in Kaldi [24]. Optionally, we
also use speed perturbation [25] at ratio 0.9, 1.0, 1.1 and SpecAug-
ment [26] for the data augmentation in some corpora.

For each corpus, the detail configurations of our Conformer
model are same as ESPnet Transformer recipes [27] (Enc =
12,Dec = 6, dff = 2048, H = 4, datt = 256). Particularly, the
number of attention heads and attention dimensions are different for
Librispeech (H = 8, datt = 512). The convolution subsampling
layer has 2-layer CNN with 256 channels, stride with 2, and kernel
size with 3. For different corpora, we train 20-100 epochs and av-
erage the last 10 best checkpoints as the final model. We tune the
learning rate coefficient (e.g., 1-10) and the kernel size of CONV
module (e.g., 5-31) on the corresponding development sets to obtain
the best results. Detail setups can be referred to ESPnet recipes3.

4.2. Results

Table 1 shows the character and word error rate (CER/WER) re-
sults on each corpus. It can be seen that Conformer model outper-
forms Transformer on 14/17 corpora in our experiments and even
achieves state-of-the-art results on several corpora. Instead of the
single-speaker speech, it also brings about 7% relative improvement
compared with Transformer on the multi-speaker WSJ-2mix data.
Besides, we also conduct experiments to investigate the general-
ization of Conformer model on low-resource language corpora, as

3https://github.com/espnet/espnet

Table 3. CER/WER results of pure CTC models. Vocabularies, er-
ror metrics and evaluations sets are same as Table 1. We only use
greedy-search without LM rescoring during the inference.

Dataset Transformer-CTC Conformer-CTC
CSJ 6.0 / 4.2 / 4.8 4.8 / 3.7 / 3.8

TEDLIUM2 16.7 / 16.6 9.3 / 8.7
VoxForge 14.0 / 14.1 9.2 / 8.4

WSJ 19.4 / 15.5 12.9 / 10.9

Table 4. CER results of different Transducer models on the dev/test
set of the VIVOS corpus. All experiments w/o data augmentation.

Model dev test
Transformer-Transducer 17.2 17.1
Conformer-Transducer 13.7 14.0

TDNN-Conformer-Transducer 11.6 13.1

shown in Table 2. Conformer achieves more than 15% relative im-
provements in all 8 different languages compared with Transformer.

Since our Conformer model uses the same decoder framework
as Transformer, the performance gains may come from the additional
local information provided by the CONV module. Thus, we study
the effects of the CONV module by training a pure CTC model or a
Transducer model with the Conformer encoder4. Table 3 summaries
the CER/WER results of two pure CTC models, while Table 4 shows
the CER results of different Transducer models. We use a single long
short-term memory (LSTM) layer decoder in all Transducer models.
Detail setups can be referred to ESPnet recipes.3. Both Conformer-
CTC and TDNN-Conformer-Transducer models show consistent im-
provement and the Conformer-CTC model even achieves competi-
tive results over Transformer with a decoder. From above results,
we can conclude that Conformer shows superior performance in var-
ious types of ASR corpora, even in the challenging far-field, mixed
speech, and low-resource language scenarios.

4More CTC and Transducer results on different corpora will be shown
in the ESPnet toolkit.
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12,Dec = 6, dff = 2048, H = 4, datt = 256). Particularly, the
number of attention heads and attention dimensions are different for
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layer has 2-layer CNN with 256 channels, stride with 2, and kernel
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erage the last 10 best checkpoints as the final model. We tune the
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provements in all 8 different languages compared with Transformer.

Since our Conformer model uses the same decoder framework
as Transformer, the performance gains may come from the additional
local information provided by the CONV module. Thus, we study
the effects of the CONV module by training a pure CTC model or a
Transducer model with the Conformer encoder4. Table 3 summaries
the CER/WER results of two pure CTC models, while Table 4 shows
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CTC and TDNN-Conformer-Transducer models show consistent im-
provement and the Conformer-CTC model even achieves competi-
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same data preparation procedure as in Kaldi [24]. Optionally, we
also use speed perturbation [25] at ratio 0.9, 1.0, 1.1 and SpecAug-
ment [26] for the data augmentation in some corpora.

For each corpus, the detail configurations of our Conformer
model are same as ESPnet Transformer recipes [27] (Enc =
12,Dec = 6, dff = 2048, H = 4, datt = 256). Particularly, the
number of attention heads and attention dimensions are different for
Librispeech (H = 8, datt = 512). The convolution subsampling
layer has 2-layer CNN with 256 channels, stride with 2, and kernel
size with 3. For different corpora, we train 20-100 epochs and av-
erage the last 10 best checkpoints as the final model. We tune the
learning rate coefficient (e.g., 1-10) and the kernel size of CONV
module (e.g., 5-31) on the corresponding development sets to obtain
the best results. Detail setups can be referred to ESPnet recipes3.

4.2. Results

Table 1 shows the character and word error rate (CER/WER) re-
sults on each corpus. It can be seen that Conformer model outper-
forms Transformer on 14/17 corpora in our experiments and even
achieves state-of-the-art results on several corpora. Instead of the
single-speaker speech, it also brings about 7% relative improvement
compared with Transformer on the multi-speaker WSJ-2mix data.
Besides, we also conduct experiments to investigate the general-
ization of Conformer model on low-resource language corpora, as
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Table 3. CER/WER results of pure CTC models. Vocabularies, er-
ror metrics and evaluations sets are same as Table 1. We only use
greedy-search without LM rescoring during the inference.
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Table 4. CER results of different Transducer models on the dev/test
set of the VIVOS corpus. All experiments w/o data augmentation.

Model dev test
Transformer-Transducer 17.2 17.1
Conformer-Transducer 13.7 14.0

TDNN-Conformer-Transducer 11.6 13.1

shown in Table 2. Conformer achieves more than 15% relative im-
provements in all 8 different languages compared with Transformer.

Since our Conformer model uses the same decoder framework
as Transformer, the performance gains may come from the additional
local information provided by the CONV module. Thus, we study
the effects of the CONV module by training a pure CTC model or a
Transducer model with the Conformer encoder4. Table 3 summaries
the CER/WER results of two pure CTC models, while Table 4 shows
the CER results of different Transducer models. We use a single long
short-term memory (LSTM) layer decoder in all Transducer models.
Detail setups can be referred to ESPnet recipes.3. Both Conformer-
CTC and TDNN-Conformer-Transducer models show consistent im-
provement and the Conformer-CTC model even achieves competi-
tive results over Transformer with a decoder. From above results,
we can conclude that Conformer shows superior performance in var-
ious types of ASR corpora, even in the challenging far-field, mixed
speech, and low-resource language scenarios.

4More CTC and Transducer results on different corpora will be shown
in the ESPnet toolkit.

CER/WER results of pure CTC models. CER results of different Transducer 
models on the VIVOS corpus.



Combine ESPnet with S3PRL [Yang+ 2021, Chang+ 2021]

• Self-supervised pretraining on speech data have achieved a lot of 
progress, like wav2vec2.0 [Baevski+ 2020], Hubert [Hsu+ 2021], etc.

• S3PRL* toolkit provides an integration of pretrained speech 
representation models and speech tasks, e.g., wav2vec2.0 + LSTM 
acoustic model for ASR.

• Support combine the pretrained models with advanced end-to-end 
speech processing models in a simple way.

*: https://github.com/s3prl/s3prl 



ASR Experiments (80 hours English task)
• Word Error Rate (%) on WSJ corpus

Models dev93 dev92
Kaldi Chain Model 4.3 2.3
ESPnet Conformer 6.6 4.4
ESPnet Conformer + wav2vec2.0 2.8 1.8
ESPnet Conformer + Hubert 3.1 1.8

Reach the state-of-the-art results.



ASR Experiments (960 hours English task)
• Word Error Rate (%) on Librispeech corpus

Toolkit dev_clean dev_other test_clean test_other
Google Conformer 2.1 4.3 1.9 3.9
ESPnet Conformer 1.9 4.6 2.1 4.7
Facebook wav2vec2.0 (60k LibriVox) 1.6 3.0 1.8 3.3
Facebook Hubert 1.7 3.0 1.9 3.5
ESPnet Conformer + wav2vec2.0 1.9 5.4 2.2 5.2
ESPnet Conformer + Hubert 1.7 3.4 1.8 3.6

Obtain further improvements with the help of self-
supervised pretrained models. 



Future Work on Self-Supervised Pretrained Models
• Conduct comprehensive experiments on more corpora and more tasks
• Investigate the efficiency of self-supervised pretrained models on multi-

lingual datasets
• Explore different scenarios, like domain mismatch, low-resource, etc. 



How to build an ASR system with ESPnet
• Each recipe is organized as “egs/***/asr1/run.sh”
• The most import directories:

– “conf/”: configurations for stages and computation clusters
– “data/”: raw data prepared by Kaldi, e.g., wav.scp, text, utt2spk, etc.
– “dump/”: dumped json format data for ESPnet
– “exp/”: saved model parameters and log files



How to build an ASR system with ESPnet
• Basic flow of recipes

• Simple Flow
• No GMM
• No FST
• No alignment
• No lattice output

• Easy to expand
• Various frameworks

• All-in-one recipe
• Data download
• Data preparation
• Training & inference
• Reproducible results
• Pretrained models

Kaldi-style
data

prepartion
Feature

extraction

(Optional)
Language

model
training

Data dump
to ESPnet

Json format
Decoding

and scoring
End-to-end

ASR training

Stage 0 Stage 1 Stage 4Stage 2 Stage 3 Stage 5

Kaldi Chainer or Pytorchrun.sh (ASR)

https://github.com/espnet/espnet/blob/master/egs/librispeech/asr1/run.sh

https://github.com/espnet/espnet/blob/master/egs/librispeech/asr1/run.sh


A more flexible structure: ESPnet2 
• Main differences between ESPnet1 and ESPnet2

Data prepartion

ESPnet1 ESPnet2

Rely on Kaldi, before
trainingFeature

extraction

Data dump

LM training

ASR training

Memory & time cost 

Kaldi-free, on-the-fly
processing

Chainer-based trainer 
DataParallel Training 

Chainer-free 
DistributedDataParallel

Training 



How to combine self-supervised pretrained models
• ESPnet2 has already supported loading the self-supervised pretrained 

models as the ASR frontends
• All we need to do is change the configuration file 

Choose an 
upstream model

Freeze the params. 
of upstream model

Add a feature 
transform layer



Next Section by Sathvik

How to build a multilingual and code-switching ASR 
system for the low resource India languages?



Overview of today’s tutorial

• 5pm to 6pm: part I presentation by Shinji
– Introduction of end-to-end ASR and ESPnet

• 6pm to 6:30 pm: Q&A for part I and break
• 6:30pm to 7pm: part II presentation by Pengcheng
– Advanced techniques in ESPnet

• 7pm to 7:15 pm: part II espnet mucs recipe by 
Sathvik
– espnet mucs recipe, and demo

• 7:15pm to 7:30pm: summary and Q&A by Shinji



espnet mucs recipe, and demo

• Materials
• https://github.com/bloodraven66/writeup/blob/main/TUTORIAL.MD

• ASR demo (we’ll update MUCS models soon)
• https://colab.research.google.com/github/espnet/notebook/blob/master/espnet2_asr_realtime_demo.i

pynb

https://github.com/bloodraven66/writeup/blob/main/TUTORIAL.MD
https://colab.research.google.com/github/espnet/notebook/blob/master/espnet2_asr_realtime_demo.ipynb
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Summary

• End-to-End speech processing has a lot of potentials especially for the multilingual 
setup

• But it always has pros and cons

• ESPnet now reaches SOTA again
• Conformer/self-supervised training

•We can easily build an ESPnet recipe for a new language

• Why I like end-to-end?
• It becomes very simple
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Thanks!

Special thanks to Prasanta Kumar Ghosh, Anuj Diwan, Sanket Shah, 
Shreya Khare, Preethi Jyothi for their great help on this tutorial 


