

Dual Script E2E framework for Multilingual and Code-Switching ASR

MUCS 2021 Workshop

Authors: Mari Ganesh Kumar, Jom Kuriakose, Anand Thyagachandran, Arun Kumar A, Ashish Seth, Lodagala VSV Durga Prasad, Saish Jaiswal, Anusha Prakash and Hema Murthy August 11, 2021

Presented by: Mari Ganesh Kumar

Introduction

Common Label Set (CLS)

Multilingual ASR

Code Switching ASR

Other Issues

Summary

Introduction

To build better multilingual and code-switching ASR systems for low resource Indian languages

Multilingual ASR

Utt 1:	மேற்கு	இந்தியத் தீவுகள் கொடி கட்டிப் பறந்த காலம் அது
Utt 2:	આવી જે	ભૂવિનાત્મક વાતો રાહુલ ગાંધી પણ કરી રહ્યો છે
Utt 3:	सुशीला ने	विमानचालकों को बताया कि उड़ान भरते हुए विमान कैसे गोता खाएँ

$code\text{-switching} \ \textbf{ASR}$

Utt	1:	libreoffice impress এর উপর এই কথয tutorial এ আপনাদের সবাগত
Utt	2:	जैसे कि आप देख सकते हैं workspace में 5 tabs हैं जिन्हें view buttons कहते हैं

• Unified Parser for Indian languages (Baby et al. 2016a) - an in-house rule-based phoneme-level common label set (CLS) representation

Why CLS?

- Unified Parser for Indian languages (Baby et al. 2016a) an in-house rule-based phoneme-level common label set (CLS) representation
- Use CLS representation to train multilingual and code-switching ASR

Why CLS?

- Unified Parser for Indian languages (Baby et al. 2016a) an in-house rule-based phoneme-level common label set (CLS) representation
- Use CLS representation to train multilingual and code-switching ASR

Why CLS?

• (Prakash et al. 2019; Prakash and Murthy 2020) - Better text-to-speech (TTS) synthesis for low resource Indian languages using CLS

- Unified Parser for Indian languages (Baby et al. 2016a) an in-house rule-based phoneme-level common label set (CLS) representation
- Use CLS representation to train multilingual and code-switching ASR

Why CLS?

- (Prakash et al. 2019; Prakash and Murthy 2020) Better text-to-speech (TTS) synthesis for low resource Indian languages using CLS
- (Datta et al. 2020; Thomas, Audhkhasi, and Kingsbury 2020) Use transliterated text to train multilingual ASR.

- Unified Parser for Indian languages (Baby et al. 2016a) an in-house rule-based phoneme-level common label set (CLS) representation
- Use CLS representation to train multilingual and code-switching ASR

Why CLS?

- (Prakash et al. 2019; Prakash and Murthy 2020) Better text-to-speech (TTS) synthesis for low resource Indian languages using CLS
- (Datta et al. 2020; Thomas, Audhkhasi, and Kingsbury 2020) Use transliterated text to train multilingual ASR.
- (Shetty and Umesh 2021) Use a character mapping between different Indian Languages, inspired by CLS, to train multilingual ASR

Common Label Set (CLS)

Table 1: Examples of words and their corresponding CLS representations

Language	Word	Parser output	CLS
Gujarati	હર્ષે	har <mark>sxee</mark>	har¶E
Hindi	कड़वे	kadxwee	kaड्w <mark>E</mark>
Marathi	घट	ghatx	ਬaਟ
Odiya	ସାରିଛି	saarichi	sAriCi
Tamil	அனுமதி	anxumati	aणumati
Telugu	ఏంటీ	eeqtxii	Eq <mark>ट</mark> l
English	action	AEKSHAHN	अ k शan

Parsers

- Indian Languages: Unified Parser (Baby et al. 2016b)
- English : Neural network-based grapheme to phoneme converter (Park and Kim 2019)

Multilingual ASR

- Sampling Rate: 8000Hz
- Features: 80 mel filter bank energies along + pitch
- Architectures: Hybrid CTC-attention models (Watanabe et al. 2018; Watanabe et al. 2017) using transformers
- Toolkit : ESPNet (Watanabe et al. 2018)
- Output Units: byte-pair (Kudo 2018) and character

Table 2: Baseline Hybrid CTC-attention(Watanabe et al. 2018; Watanabe et al.2017) model

• CLS representation is used to pool data from all six languages and train E2E model

Table 3: Proposed CLS E2E model

- CLS representation is used to pool data from all six languages and train E2E model
- Language ID is performed on the decoded CLS

Table 3: Proposed CLS E2E model

- CLS representation is used to pool data from all six languages and train E2E model
- Language ID is performed on the decoded CLS
- Machine Transliteration is used to retrieve native text from CLS

Table 3: Proposed CLS E2E model

- Phoneme (CLS) to grapheme (native script) mapping is not one-to-one
- Rules such as *schwa* deletion, geminate correction, and syllable parsing (Baby et al. 2016a) add to the complexity.

Table 4: Confusions in CLS to native script mapping

Language	CLS	Possible mappings
Hindi	kAmcor	कामचोर, काम्चोर
Bengali	sidधAnt	সিদ্ধান্ত, সিদ্ধান্ত, সিদ্ধানত

Language ID

- Features: multi-gram TF-IDF (at both character and word-level)
- Classifier: Naive Bayes
- Results: Accuracy of 99.7% on sub-task 1 development data
- Additional resources used: IndicTTS text data (Baby et al. 2016b)

Machine Transliteration

- Toolkit: ONMT toolkit (Klein et al. 2017)
- Architecture: long short term memory (LSTM) based encoder-decoder model with global attention
- Results: 1.78% average WER and 0.44% average CER on sub-task 1 development data
- Additional resources used: IndicTTS text data (Baby et al. 2016b)

Figure 1: Proposed Dual Script E2E Model

Output [in Native Script] Output 2 [in CLS] • Integrates the LID and machine transliteration backend within the E2E model CTC laver Transformer CTC layer 2 : Decoder • Two CTC layers and decoders to predict the CLS and native language script simultaneously Transformer: Encoder

Figure 1: Proposed Dual Script E2E Model

- Integrates the LID and machine transliteration backend within the E2E model
- Two CTC layers and decoders to predict the CLS and native language script simultaneously
- Output in CLS is discarded during decoding

Table 5: Results of sub-task 1 on development data

System Type	BPU/ CU	hi	mr	or	ta	te	gu	Avg
	1	(hallenge	Baselin	e			
GMM-HMM	-	69.0	33.2	55.7	48.8	47.2	28.3	46.8
TDNN	-	40.4	22.4	39.0	33.5	30.6	19.2	30.7
	Ou	r Results	(Witho	ut Langu	age Mod	lel)		
Baseline	BPU	52.1	33.8	71.3	31.3	32.9	26.5	49.5
E2E Model	CU	26.5	17.1	36.1	35.3	36.6	28.4	30.0
CLS	BPU	34	21.8	50.1	31.7	31.5	26.5	32.6
E2E Model	CU	26.2	17.4	39.5	37.8	37.2	30.1	34.6
Dual Script	BPU	29.4	19.8	44.9	30.5	31.9	24.4	30.1
E2E Model	CU	25.9	17.1	37.4	35.2	35.8	27.7	29.8

• Dual script model has given the best performance for 4 out of 6 languages

Results (Dual Script E2E Model)

Table 5: Results of sub-task 1 on development data

System Type	BPU/ CU	hi	mr	or	ta	te	gu	Avg				
		Ch	allenge	Baselir	ie							
GMM-HMM	-	69.0	33.2	55.7	48.8	47.2	28.3	46.8				
TDNN	-	40.4	22.4	39.0	33.5	30.6	19.2	30.7				
	Our Results (Without Language Model)											
Baseline	BPU	52.1	33.8	71.3	31.3	32.9	26.5	49.5				
E2E Model	CU	26.5	17.1	36.1	35.3	36.6	28.4	30.0				
CLS	BPU	34	21.8	50.1	31.7	31.5	26.5	32.6				
E2E Model	CU	26.2	17.4	39.5	37.8	37.2	30.1	34.6				
Dual Script	BPU	29.4	19.8	44.9	30.5	31.9	24.4	30.1				
E2E Model	CU	25.9	17.1	37.4	35.2	35.8	27.7	29.8				

- Dual script model has given the best performance for 4 out of 6 languages
- The CU Dual Script model improves the average WER by $\approx 1\%$ over baseline without using any language model

- Architecture: Transformers
- Toolkit: ESPNet (Watanabe et al. 2018)
- Additional Resources Used: Indic TTS (Baby et al. 2016b), Al4Bharat NLP corpora (Kakwani et al. 2020)
- Total Size: ≈ 150 million sentences
- No of epochs trained: 1

BPU/ CU	hi	mr	or	ta	te	gu	Avg
-	40.4	22.4	39.0	33.5	30.6	19.2	30.7
F	esults w	ithout a	ny Langu	age Moo	lel		
BPU	34	21.8	50.1	31.7	31.5	26.5	32.6
CU	26.2	17.4	39.5	37.8	37.2	30.1	34.6
BPU	29.4	19.8	44.9	30.5	31.9	24.4	30.1
CU	25.9	17.1	37.4	35.2	35.8	27.7	29.8
	Resul	ts with L	anguage	Model	1	1	
BPU	31.8	21.8	48.2	25.6	24.2	20.7	28.7
CU	21.4	14.6	38.3	28.8	27.3	22.4	25.4
BPU	27.8	20.0	48.2	23.6	23.6	18.8	27.0
CU	21.6	15.1	36.0	25.9	25.3	20.5	24.0
	BPU/ CU - BPU CU BPU CU BPU CU BPU CU	BPU/ CU hi - 40.4 Results w BPU 34 CU 26.2 BPU 29.4 CU 25.9 BEVU 31.8 CU 31.8 CU 31.8 CU 21.4 BPU 21.6	BPU/ CU hi mr - 40.4 22.4 Results without and Results without and CU 34 21.8 CU 26.2 17.4 BPU 3.4 19.8 CU 25.9 17.1 Results with L BPU 31.8 21.8 CU 31.8 21.8 CU 31.4 14.6 BPU 27.8 20.0 CU 21.6 15.1	BPU/ CU hi mr or - 40.4 22.4 39.0 Results without any Langu 39.0 39.0 BPU 34 21.8 50.1 CU 26.2 17.4 39.5 BPU 29.4 19.8 44.9 CU 25.9 17.1 37.4 BPU 31.8 21.8 48.2 CU 25.9 17.1 37.4 BPU 31.8 21.8 48.2 CU 21.4 14.6 38.3 BPU 27.8 20.0 48.2 CU 21.6 15.1 36.0	BPU/ CU hi mr or ta - 40.4 22.4 39.0 33.5 Results without and table 39.0 33.5 BPU 34 21.8 50.1 31.7 CU 26.2 17.4 39.5 37.8 BPU 29.4 19.8 44.9 30.5 CU 25.9 17.1 37.4 35.2 Results with Language Model BPU 31.8 21.8 48.2 25.6 CU 21.4 14.6 38.3 28.8 BPU 27.8 20.0 48.2 23.6 CU 21.6 15.1 36.0 25.9 36.0 36.9	BPU/ CU hi mr or ta te - 40.4 22.4 39.0 33.5 30.6 Results without and tails Lange Model 33.5 30.6 Results without and tails Lange Model 31.7 31.5 CU 26.2 17.4 39.5 37.8 37.2 BPU 29.4 19.8 44.9 30.5 31.9 CU 25.9 17.1 37.4 35.2 35.8 Results with Language Model Model Language Model 44.2 25.6 24.2 BPU 31.8 21.8 48.2 25.6 24.2 CU 21.4 14.6 38.3 28.8 27.3 BPU 27.8 20.0 48.2 23.6 23.6 CU 21.4 15.1 36.0 25.9 25.3	BPU/ CU hi mr or ta te gu - 40.4 22.4 39.0 33.5 30.6 19.2 Results without any tanget BPU 34 21.8 50.1 31.7 31.5 26.5 CU 26.2 17.4 39.5 37.8 37.2 30.1 BPU 29.4 19.8 44.9 30.5 31.9 24.4 CU 25.9 17.1 37.4 35.2 35.8 27.7 Results without any tanget BPU 31.8 21.8 48.2 25.6 24.2 20.7 CU 21.4 14.6 38.3 28.8 27.3 22.4 BPU 37.8 20.0 48.2 23.6 24.2 20.7 CU 21.4 14.6 38.3 28.8 27.3 22.4 BPU 27.8 20.0 48.2 23.6 23.6 18.8

Table 6: Results of sub-task 1 on development data

• With language model, the proposed model gave better results for all the six languages

Results with LM

Table	6:	Results	of	sub-task	1	on	development da	ata
-------	----	---------	----	----------	---	----	----------------	-----

System Type	BPU/ CU	hi	mr	or	ta	te	gu	Avg
TDNN	-	40.4	22.4	39.0	33.5	30.6	19.2	30.7
	Resi	ults with	hout an	y Langi	uage M	odel		
CLS	BPU	34	21.8	50.1	31.7	31.5	26.5	32.6
E2E Model	CU	26.2	17.4	39.5	37.8	37.2	30.1	34.6
Dual Script	BPU	29.4	19.8	44.9	30.5	31.9	24.4	30.1
E2E Model	CU	25.9	17.1	37.4	35.2	35.8	27.7	29.8
	. I	Results	with La	anguage	Mode			
CLS	BPU	31.8	21.8	48.2	25.6	24.2	20.7	28.7
E2E Model	CU	21.4	14.6	38.3	28.8	27.3	22.4	25.4
Dual Script	BPU	27.8	20.0	48.2	23.6	23.6	18.8	27.0
E2E Model	CU	21.6	15.1	36.0	25.9	25.3	20.5	24.0

- With language model, the proposed model gave better results for all the six languages
- The CU Dual Script model achieved an absolute improvement of 6% over the challenge baseline.

Results with LM

System Type	BPU/ CU	hi	mr	or	ta	te	gu	Avg
TDNN	-	40.4	22.4	39.0	33.5	30.6	19.2	30.7
	Resi	lts wit	hout an	y Lang	lage M	odel		
CLS	BPU	34	21.8	50.1	31.7	31.5	26.5	32.6
E2E Model	CU	26.2	17.4	39.5	37.8	37.2	30.1	34.6
Dual Script	BPU	29.4	19.8	44.9	30.5	31.9	24.4	30.1
E2E Model	CU	25.9	17.1	37.4	35.2	35.8	27.7	29.8
		Results	with La	anguage	Model			
CLS	BPU	31.8	21.8	48.2	25.6	24.2	20.7	28.7
E2E Model	CU	21.4	14.6	38.3	28.8	27.3	22.4	25.4
Dual Script	BPU	27.8	20.0	48.2	23.6	23.6	18.8	27.0
E2E Model	CU	21.6	15.1	36.0	25.9	25.3	20.5	24.0

Table 6: Results of sub-task 1 on development data

- With language model, the proposed model gave better results for all the six languages
- The CU Dual Script model achieved an absolute improvement of 6% over the challenge baseline.
- The best performing three systems were submitted for evaluation on blind data

System Type	BPU /CU	hi	mr	or	ta	te	gu	Avg		
			Challeng	e Baseli	ne					
TDNN	-	37.2	29.0	38.4	34.0	31.4	26.1	32.73		
Submitted Systems										
CLS E2E Model	CU	19.5	85.9	37.1	32.0	30.3	32.9	39.6		
Dual Script E2E Model	BPU	25.3	100.3	51.2	25.1	25.4	25.4	42.1		
Dual Script E2E Model	CU	17.8	111.7	32.1	27.1	28.1	29.8	41.1		

- Except Marthi, the dual script system outperformed the baseline results for all six languages
- On the average WER, still the baseline was better

Blind Test Results without Marathi

Table 8: Results of sub-task 1 on blind data

System Type	BPU/ CU	hi	or	ta	te	gu	Avg	
Challenge Baseline								
TDNN	-	37.2	38.4	34.0	31.4	26.1	33.4	
Submitted Systems								
CLS E2E Model	CU	19.5	37.1	32.0	30.3	32.9	30.3	
Dual Script E2E Model	BPU	25.3	51.2	25.1	25.4	25.4	30.4	
Dual Script E2E Model	CU	17.8	32.1	27.1	28.1	29.8	27.4	

• Excluding Marathi, the submitted system achieved 6% absolute improvement in average WER.

Code Switching ASR

Sub Task 2 Results

 Table 9: Results of sub-task 2 on development and blind data

System	BPU/	Dev Data					
Туре	CU	hi-en	bn-en	Avg			
Challenge Baseline (With Language Model)							
GMM-HMM	-	44.3	39.1	41.7			
TDNN	-	36.9	34.0	35.6			
E2E Model	BPU	27.7	37.2	32.4			
Our Results (Without Language Model)							
Dual Script	CU	33.0	27.0	30			
E2E Model	BPU	28.9	25.3	27.1			

- For subtask 2, BPU give better results consistently
- The proposed model achieved 5% improvement over the challenge baseline without any language model
- Note: Baseline systems were trained and decoded separately for each language-pair. The proposed system were trained combinedly and language-pair information was not given during decoding.

Table 10: Results of sub-task 2 on developmentand blind data

System	BPU/	Blind Test				
Туре	CU	hi-en	bn-en	Avg		
Challenge Baseline (With Language Model)						
E2E Model	BPU	25.5 32.8		29.1		
Our Results (Without Language Model)						
Dual Script	RPH	22.0	27.8	24.9		
E2E Model	ЫО	22.0	27.0	24.5		

• On the blind test as well, the proposed model achieved 5% improvement over the challenge baseline.

Other Issues

Figure 2: Example of a wrongfully penalized utterance

Figure 3: Sentences mostly made up of English words (From subtask-1 Marathi dataset)

REF: एचडीएफसी बँक शेअर अनॅलिसिस शो</mark> कर (HDFC Bank Share Analysis Show)

REF: सबस्क्राईब रिन्यू कर (<mark>Subscribe Renew</mark>)

REF: जिओ अॅप डाऊनलोड कर (JIO app download)

Valid Languages: Hindi, Marathi, Gujarati

Summary

- Using two different models, CLS representation has been shown to be effective for both multilingual and code-switching task in the context of ASR
- Dual Script framework provides a novel way to train multilingual ASR using the native script and a common representation

References

- Baby, Arun et al. (2016a). "A unified parser for developing Indian language text to speech synthesizers". In: International Conference on Text, Speech and Dialogue, pp. 514–521.
 Baby, Arun et al. (2016b). "Resources for Indian languages". In: Community-based Building of Language Resources (International Conference on Text, Speech and Dialogue), pp. 37–43.
- Datta, Arindrima et al. (2020). "Language-agnostic multilingual modeling". In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 8239–8243.
- Diwan, Anuj et al. (2021). "Multilingual and code-switching ASR challenges for low resource Indian languages". In: *arXiv preprint arXiv:2104.00235*.

- Kakwani, Divyanshu et al. (2020). "IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages". In: *Findings of EMNLP*.
- Klein, Guillaume et al. (2017). "Opennmt: Open-source toolkit for neural machine translation". In: *arXiv preprint arXiv:1701.02810*.
- Kudo, Taku (2018). "Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates". In: arXiv: 1804.10959 [cs.CL].
- Park, Kyubyong and Jongseok Kim (2019). g2pE. https://github.com/Kyubyong/g2p.
- Prakash, Anusha and Hema A. Murthy (2020). "Generic Indic Text-to-Speech Synthesisers with Rapid Adaptation in an End-to-End Framework". In: Interspeech, pp. 2962–2966.
- Prakash, Anusha et al. (2019). "Building Multilingual End-to-End Speech Synthesisers for Indian Languages". In: 10th ISCA Speech Synthesis Workshop (SSW), pp. 194–199.
- Shetty, Vishwas M and S Umesh (2021). "Exploring the use of Common Label Set to Improve Speech Recognition of Low Resource Indian Languages". In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 7228–7232.

- Thomas, Samuel, Kartik Audhkhasi, and Brian Kingsbury (2020). "Transliteration Based Data Augmentation for Training Multilingual ASR Acoustic Models in Low Resource Settings". In: *Proc. Interspeech 2020*, pp. 4736–4740.
- Watanabe, Shinji et al. (2017). "Hybrid CTC/attention architecture for end-to-end speech recognition". In: *IEEE Journal of Selected Topics in Signal Processing* 11.8, pp. 1240–1253.
- Watanabe, Shinji et al. (2018). "ESPnet: End-to-End Speech Processing Toolkit". In: *Proceedings of Interspeech*, pp. 2207-2211. DOI: 10.21437/Interspeech.2018-1456. URL: http://dx.doi.org/10.21437/Interspeech.2018-1456.

Thank You & Questions?