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Subtask 1 System Overview

Acoustic Model

• CNN-TDNN with language specific outputs
• Trained with LF-MMI
• Multilingual pre-training
• Monolingual fine-tuning

Language Model

• Language specific 3-gram and RNN LMs
• Training data + CommonCrawl data
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Youtube Crawling

To increase the training data size we crawl Youtube videos by
searching for the most common trigrams.

2



Youtube Crawling

To increase the training data size we crawl Youtube videos by
searching for the most common trigrams.

We filter videos using mean confidence and speaking rate.
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Semi-Supervised Training

Because we do not have transcriptions for Youtube videos, we
use Semi-Supervised Training.

• We decode the videos with a seed model.
• We use the decoded output as labels for training.
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Results
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Results

Multilingual Model + Fine-tuning
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Results

Multilingual Model + Fine-tuning + Web LM
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Results

Multilingual Model + Fine-tuning + Web LM + RNN-LM
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Multilingual Model + Fine-tuning + Web LM + RNN-LM
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Results

Multilingual Model + Fine-tuning + Web LM + RNN-LM
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Language Identification

Blind test set does not contain language id, therefore we used
confidence based language identification.
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Blind test set does not contain language id, therefore we used
confidence based language identification.
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Language Identification Results

Confidence
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Language Identification Results
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Language Identification Results

Confidence Cal. Confidence Cal. Conf. + SR
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Language Identification Results
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ASR models for low-resource languages
can be trained with standard Kaldi recipes

and crawled text/audio data.
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ASR models for low-resource languages
can be trained with standard Kaldi recipes

and crawled text/audio data.
Confidence-based language identification
works well, but is very expensive for

deployment.

6



Subtask 2 System Overview

Acoustic Model

• CNN-TDNN with language specific outputs
• Multilingual training with LF-MMI

Language Model

• 3-gram, RNN-LM
• Data:

• Training data
• Hindi/Bengali CommonCrawl data
• English SpokenTutorial.org subtitles
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Lexicon

• Provided lexicon used language-specific units.

• To use the same units we trained a phone matcher using
automatically crawled Wikipedia data.
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Training the Phone Matcher
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Language Modeling

The data contains a lot of English technical terms which might
be rare in Hindi/Bengali CommonCrawl.
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because SpokenTutorial.org was a common term in the training
data.
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Language Modeling

The data contains a lot of English technical terms which might
be rare in Hindi/Bengali CommonCrawl.

We downloaded subtitles of English SpokenTutorial.org videos,
because SpokenTutorial.org was a common term in the training
data.

The final language model was a mixture of language models
trained on:

• Training data
• CommonCrawl data
• English SpokenTutorial.org subtitles

Interpolation weights were estimated on the dev data.
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Hindi-English Results
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Hindi-English Results

Baseline + Cleanup
0

5

10

15

20

25

30
W

ER
 (%

)

27.7

21.4

Grapheme Lexicon

11



Hindi-English Results

Baseline + Cleanup + Resegment.
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Hindi-English Results

Baseline + Cleanup + Resegment. + Web LM
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Hindi-English Results

Baseline + Cleanup + Resegment. + Web LM + RNN-LM
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Bengali-English Results

Baseline + Cleanup + Resegment. + Web LM + RNN-LM
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Training data cleanup and appropriate LM data
were very important for this challenge.

Phone matching can be learned automatically
using Wikipedia data for languages using

different scripts.
It is not clear that naively mixing language
models would work in more challenging

code-switching conditions.
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