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Preview

Training Hybrid Models on Noisy Transliterated Transcripts for Code-Switched 
Speech Recognition

Hybrid Models — Wide Residual Networks and BLSTMs

Noisy — Found data are noisy

Transliterated — Words are written in both Indic and Latin scripts.



Hybrid Models — nnet_pytorch

• Kaldi with pytorch-based neural network training using pychain


• https://github.com/m-wiesner/nnet_pytorch/tree/conda_install


• https://github.com/YiwenShaoStephen/pychain


• All minibatches are created randomly, on-the-fly, with SpecAugment-like perturbations 
and variable-width chunks.


• To support truly random mini-batching, numerator lattices are not used.


• The single best pdf-id sequence is used as the target and the gradients are smoothed 
across time to mimic a lattice of multiple possible alignments


• Adam Optimizer


• Training and decoding otherwise mimics Kaldi-style training of neural networks



Hybrid Models

• BLSTM and WideResidual networks


• All performed comparably. The BLSTM was slightly better


• Multilingual training and pretraining


• Pretraining the BLSTM on 960h of Librispeech


• Multilingual training on the Hindi and Bengali data starting from the pretrained Librispeech 
model


• Pretraining seems to help slightly. Results from multilingual training experiments were 
inconclusive


• Final models were combinations of monolingual and multilingual models trained from scratch, 
and initialized with the Librispeech model. 



Noisy Data

• Errors in Speaker labels


• Speaker re-labeling


• Repeated transcripts in test data


• Partition test-data into duplicate and non-duplicate sets for analysis


• Segmentation and transcription errors


• Cleaning the transcripts is important!



Noisy Data — Speaker Relabeling

• Many lectures had sign-off statements in which speakers identify themselves


• The sign-off statements did not agree with the speaker labels


• We ran an x-vector based speaker identification system


• Close to 100% agreement between the xvector-based system and sign-off statements


• Assuming the x-vector based system is correct, all speakers seen in training are also 
seen in both the test and blind test sets


• There are very few unique speakers


• Closed-Speaker ASR task —> Models are prone to overfitting



Noisy Data — Speaker Relabeling

• Updated number of speakers


• Note that all speakers are seen in the training set



Noisy Data — Transcript Deduplication

• Most lectures from which test set segments were drawn were also seen in the 
training set.


• WER can be driven artificially low using bad models with an overfit 
language model, to the point where HMM-GMMs perform comparably to 
Deep-learning based ASR approaches.


• Greatly reduces the importance of good acoustic modeling


• For about 50% of the test set recordings more than 80% of all utterances 
were seen in the training data.



Noisy Data — Transcript Deduplication

• Created 2 new test set partitions for tuning to prevent overfitting


• Recordings with >80% of utterances also present in training were assigned 
to a new test set called Dup 

• All other recordings were placed in a test set called NoDup 

• Tuning was always performed on NoDup 

• HMM-GMMs perform significantly worse than Deep learning approaches 
on the NoDup set, as expected.



Noisy Data — Cleanup

• Transcription and segmentation errors were significant


• Two approaches explored for cleaning transcripts


• Resegmentation


• Resegmentation and Data removal


• Resegmentation was challenging:


• Long stretches of speech get erroneously mapped to <unk> and SIL which biases 
training to frequently produce no output


• Tossing segments that differed from reference significantly worked better than just 
resegmentation



Transliteration

• Many words, mostly technical, are written in both Indic and Latin Scripts


• Language model probability mass is spread over too many feasible alternatives


• Boosts the relative scores of incorrect paths compared to the sum total of paths with 
valid alternative transcripts


• Pronunciation lexicons use disjoint phoneme sets for words written in both the Indic and 
Latin scripts


• Redundant modeling units result in sparse training data for many triphonemes


• Acoustic model probability mass is spread over too many feasible alternatives

Alternative orthographic forms and 
pronunciations should be merged!

िलंक्ष — Linux



Transliteration — Gathering Transliteration Pairs

• Hindi


• All words written in the Devanagari script in test or occurring 10+ times in 
the training were paired with English words where applicable.


• 968 word pairs


• Bengali


• A semi-automated procedure based on acoustically confusable word-types 
produced candidate pairs for manual verification.


• 236 word pairs



Transliteration — Transcript Normalization

• All transliterated pairs were mapped to their Latinate forms


• Language models were trained directly on the transliterated text


• We only use transliterated WER



Transliteration — Lexicon Normalization
• Phoneme sets are unified by using the IPA


• Lexicons are obtained via G2P


• A Phonetisaurus G2P model is trained on English and Hindi/Bengali Lexicons to produce all 
pronunciations


• Seed-lexicon for Hindi and Bengali are obtained from Wikipron. For English, arpabet 
phonemes in the provided lexicon were remapped to the IPA 


• Phonemes shared between English and Hindi/Bengali are “tagged” with a language marker


• Enables further splitting when there is sufficient acoustic evidence


• All pronunciations, whether derived from the Indic and Latinate word-form, were kept after 
remapping transliteration pairs to their latinate forms



Transliteration — Accented pronunciation of English words

• Many retained pronunciations correspond to:


• American or British pronunciations of English words


• Erroneous pronunciations of Hindi/Bengali words


• We discover new, possibly Indian accented pronunciations for words by decoding 
the training data with a phoneme-level language model


• Phoneme sequences are paired with time-aligned, word-level reference transcripts


• Erroneous pronunciations are pruned by retaining only the most likely alternative 
pronunciations according to a greedy selection strategy



Transliteration — Experiments

• The unified phonetic lexicon improves performance on NoDup but hurts performance on 
the other test sets.


• Mapping transliteration pairs to their latinate forms for language modeling may help slightly


• The lexicon learning additionally improves performance.


• All combined, our approaches for dealing with transliterated text gave 10% relative 
improvement over the baseline system



Final Models

• Our best performing systems were BLSTMs pretrained on 960h of Librispeech


• Our approaches for dealing with transliterated speech worked well on Hindi, for which we had close to 
ground truth knowledge of transliteration pairs


• Did not change performance in Bengali, for which we had many fewer pairs


• We used an expanded lexicon in decoding to which we added English words from CMU-dict as well as 
words scraped from technical web material in Hindi


• Our final systems rescored lattices with an RNNLM trained on the training transcript augmented with 
some web-scraped technical material in Hindi.


• The best performing systems in each language were combined via MBR decoding   



Conclusion

• Good data-preparation is fundamental to training models!


• Transliteration pairs can be a valuable resource in handling codeswitched 
speech.

Thanks!


