
Training Hybrid Models on Noisy
Transliterated Transcripts for Code-

Switched Speech Recognition

Matthew Wiesner, Mousmita Sarma3, Ashish Arora1, Desh Raj1, Dongji Gao1, Ruizhe Huang1,
Supreet Preet3, Moris Johnson3, Zikra Iqbal3, Nagendra Goel3, Jan Trmal 1 Paola García, Sanjeev

Khudanpur

JHU/GOVIVACE Challenge Submission

Preview

Training Hybrid Models on Noisy Transliterated Transcripts for Code-Switched
Speech Recognition

Hybrid Models — Wide Residual Networks and BLSTMs

Noisy — Found data are noisy

Transliterated — Words are written in both Indic and Latin scripts.

Hybrid Models — nnet_pytorch

• Kaldi with pytorch-based neural network training using pychain

• https://github.com/m-wiesner/nnet_pytorch/tree/conda_install

• https://github.com/YiwenShaoStephen/pychain

• All minibatches are created randomly, on-the-fly, with SpecAugment-like perturbations
and variable-width chunks.

• To support truly random mini-batching, numerator lattices are not used.

• The single best pdf-id sequence is used as the target and the gradients are smoothed
across time to mimic a lattice of multiple possible alignments

• Adam Optimizer

• Training and decoding otherwise mimics Kaldi-style training of neural networks

Hybrid Models

• BLSTM and WideResidual networks

• All performed comparably. The BLSTM was slightly better

• Multilingual training and pretraining

• Pretraining the BLSTM on 960h of Librispeech

• Multilingual training on the Hindi and Bengali data starting from the pretrained Librispeech
model

• Pretraining seems to help slightly. Results from multilingual training experiments were
inconclusive

• Final models were combinations of monolingual and multilingual models trained from scratch,
and initialized with the Librispeech model.

Noisy Data

• Errors in Speaker labels

• Speaker re-labeling

• Repeated transcripts in test data

• Partition test-data into duplicate and non-duplicate sets for analysis

• Segmentation and transcription errors

• Cleaning the transcripts is important!

Noisy Data — Speaker Relabeling

• Many lectures had sign-off statements in which speakers identify themselves

• The sign-off statements did not agree with the speaker labels

• We ran an x-vector based speaker identification system

• Close to 100% agreement between the xvector-based system and sign-off statements

• Assuming the x-vector based system is correct, all speakers seen in training are also
seen in both the test and blind test sets

• There are very few unique speakers

• Closed-Speaker ASR task —> Models are prone to overfitting

Noisy Data — Speaker Relabeling

• Updated number of speakers

• Note that all speakers are seen in the training set

Noisy Data — Transcript Deduplication

• Most lectures from which test set segments were drawn were also seen in the
training set.

• WER can be driven artificially low using bad models with an overfit
language model, to the point where HMM-GMMs perform comparably to
Deep-learning based ASR approaches.

• Greatly reduces the importance of good acoustic modeling

• For about 50% of the test set recordings more than 80% of all utterances
were seen in the training data.

Noisy Data — Transcript Deduplication

• Created 2 new test set partitions for tuning to prevent overfitting

• Recordings with >80% of utterances also present in training were assigned
to a new test set called Dup

• All other recordings were placed in a test set called NoDup

• Tuning was always performed on NoDup

• HMM-GMMs perform significantly worse than Deep learning approaches
on the NoDup set, as expected.

Noisy Data — Cleanup

• Transcription and segmentation errors were significant

• Two approaches explored for cleaning transcripts

• Resegmentation

• Resegmentation and Data removal

• Resegmentation was challenging:

• Long stretches of speech get erroneously mapped to <unk> and SIL which biases
training to frequently produce no output

• Tossing segments that differed from reference significantly worked better than just
resegmentation

Transliteration

• Many words, mostly technical, are written in both Indic and Latin Scripts

• Language model probability mass is spread over too many feasible alternatives

• Boosts the relative scores of incorrect paths compared to the sum total of paths with
valid alternative transcripts

• Pronunciation lexicons use disjoint phoneme sets for words written in both the Indic and
Latin scripts

• Redundant modeling units result in sparse training data for many triphonemes

• Acoustic model probability mass is spread over too many feasible alternatives

Alternative orthographic forms and
pronunciations should be merged!

िलंक्ष — Linux

Transliteration — Gathering Transliteration Pairs

• Hindi

• All words written in the Devanagari script in test or occurring 10+ times in
the training were paired with English words where applicable.

• 968 word pairs

• Bengali

• A semi-automated procedure based on acoustically confusable word-types
produced candidate pairs for manual verification.

• 236 word pairs

Transliteration — Transcript Normalization

• All transliterated pairs were mapped to their Latinate forms

• Language models were trained directly on the transliterated text

• We only use transliterated WER

Transliteration — Lexicon Normalization
• Phoneme sets are unified by using the IPA

• Lexicons are obtained via G2P

• A Phonetisaurus G2P model is trained on English and Hindi/Bengali Lexicons to produce all
pronunciations

• Seed-lexicon for Hindi and Bengali are obtained from Wikipron. For English, arpabet
phonemes in the provided lexicon were remapped to the IPA

• Phonemes shared between English and Hindi/Bengali are “tagged” with a language marker

• Enables further splitting when there is sufficient acoustic evidence

• All pronunciations, whether derived from the Indic and Latinate word-form, were kept after
remapping transliteration pairs to their latinate forms

Transliteration — Accented pronunciation of English words

• Many retained pronunciations correspond to:

• American or British pronunciations of English words

• Erroneous pronunciations of Hindi/Bengali words

• We discover new, possibly Indian accented pronunciations for words by decoding
the training data with a phoneme-level language model

• Phoneme sequences are paired with time-aligned, word-level reference transcripts

• Erroneous pronunciations are pruned by retaining only the most likely alternative
pronunciations according to a greedy selection strategy

Transliteration — Experiments

• The unified phonetic lexicon improves performance on NoDup but hurts performance on
the other test sets.

• Mapping transliteration pairs to their latinate forms for language modeling may help slightly

• The lexicon learning additionally improves performance.

• All combined, our approaches for dealing with transliterated text gave 10% relative
improvement over the baseline system

Final Models

• Our best performing systems were BLSTMs pretrained on 960h of Librispeech

• Our approaches for dealing with transliterated speech worked well on Hindi, for which we had close to
ground truth knowledge of transliteration pairs

• Did not change performance in Bengali, for which we had many fewer pairs

• We used an expanded lexicon in decoding to which we added English words from CMU-dict as well as
words scraped from technical web material in Hindi

• Our final systems rescored lattices with an RNNLM trained on the training transcript augmented with
some web-scraped technical material in Hindi.

• The best performing systems in each language were combined via MBR decoding

Conclusion

• Good data-preparation is fundamental to training models!

• Transliteration pairs can be a valuable resource in handling codeswitched
speech.

Thanks!

