Training Hybrid Models on Noisy Transliterated Transcripts for Code-Switched Speech Recognition

JHU/GOVIVACE Challenge Submission

Matthew Wiesner, Mousmita Sarma, Ashish Arora, Desh Raj, Dongji Gao, Ruizhe Huang, Supreet Preet, Moris Johnson, Zikra Iqbal, Nagendra Goel, Jan Trmal Paola García, Sanjeev Khudanpur

Preview

Training Hybrid Models on Noisy Transliterated Transcripts for Code-Switched Speech Recognition

Hybrid Models – Wide Residual Networks and BLSTMs

Noisy – Found data are noisy

Transliterated — Words are written in both Indic and Latin scripts.

Hybrid Models — nnet_pytorch

- Kaldi with pytorch-based neural network training using pychain
 - <u>https://github.com/m-wiesner/nnet_pytorch/tree/conda_install</u>
 - <u>https://github.com/YiwenShaoStephen/pychain</u>
- All minibatches are created randomly, on-the-fly, with SpecAugment-like perturbations and variable-width chunks.
- To support truly random mini-batching, numerator lattices are not used.
 - The single best pdf-id sequence is used as the target and the gradients are smoothed across time to mimic a lattice of multiple possible alignments
- Adam Optimizer
- Training and decoding otherwise mimics Kaldi-style training of neural networks

Hybrid Models

- BLSTM and WideResidual networks
 - All performed comparably. The BLSTM was slightly better
- Multilingual training and pretraining
 - Pretraining the BLSTM on 960h of Librispeech
 - Multilingual training on the Hindi and Bengali data starting from the pretrained Librispeech model
 - Pretraining seems to help slightly. Results from multilingual training experiments were inconclusive
- Final models were combinations of monolingual and multilingual models trained from scratch, and initialized with the Librispeech model.

Noisy Data

- Errors in Speaker labels
 - Speaker re-labeling
- Repeated transcripts in test data
 - Partition test-data into duplicate and non-duplicate sets for analysis
- Segmentation and transcription errors
 - Cleaning the transcripts is important!

Noisy Data — Speaker Relabeling

- Many lectures had sign-off statements in which speakers identify themselves
- The sign-off statements did not agree with the speaker labels
- We ran an x-vector based speaker identification system
 - Close to 100% agreement between the xvector-based system and sign-off statements
- Assuming the x-vector based system is correct, all speakers seen in training are also seen in both the test and blind test sets
- There are very few unique speakers
 - Closed-Speaker ASR task —> Models are prone to overfitting

Noisy Data — Speaker Relabeling

- Updated number of speakers
 - Note that all speakers are seen in the training set

	Train	Test	Blind	Total
# Spks Hindi	7	4	5	7
# Spks Bengali	10	7	8	10

Noisy Data – Transcript Deduplication

- Most lectures from which test set segments were drawn were also seen in the training set.
 - WER can be driven artificially low using bad models with an overfit language model, to the point where HMM-GMMs perform comparably to Deep-learning based ASR approaches.
 - Greatly reduces the importance of good acoustic modeling
 - For about 50% of the test set recordings more than 80% of all utterances were seen in the training data.

Noisy Data — Transcript Deduplication

- Created 2 new test set partitions for tuning to prevent overfitting
 - Recordings with >80% of utterances also present in training were assigned to a new test set called *Dup*
 - All other recordings were placed in a test set called *NoDup*
 - Tuning was always performed on *NoDup*
 - HMM-GMMs perform significantly worse than Deep learning approaches on the *NoDup* set, as expected.

Noisy Data — Cleanup

- Transcription and segmentation errors were significant
- Two approaches explored for cleaning transcripts

 Resegmentation 	System	Split		
 Decomposite tion and Data removal 		NoDup	Whole	Dup
Resegmentation and Data removal	WRN	23.7	17.2	7.8
	WRN + Resegmented Cleanup	24.5	18.7	8.8
Resegmentation was challenging:	WRN + Toss Cleanup	21.5	15.2	5.9

- Long stretches of speech get erroneously mapped to <unk> and SIL which biases training to frequently produce no output
- Tossing segments that differed from reference significantly worked better than just resegmentation

Transliteration

• Many words, mostly technical, are written in both Indic and Latin Scripts

लिंक्ष — Linux

- Language model probability mass is spread over too many feasible alternatives
 - Boosts the relative scores of incorrect paths compared to the sum total of paths with valid alternative transcripts
- Pronunciation lexicons use disjoint phoneme sets for words written in both the Indic and Latin scripts
 - Redundant modeling units result in sparse training data for many triphonemes
 - Acoustic model probability mass is spread over too many feasible alternatives

Alternative orthographic forms and pronunciations should be merged!

Transliteration – Gathering Transliteration Pairs

- Hindi
 - All words written in the Devanagari script in test or occurring 10+ times in the training were paired with English words where applicable.
 - 968 word pairs
- Bengali
 - A semi-automated procedure based on acoustically confusable word-types produced candidate pairs for manual verification.
 - 236 word pairs

Transliteration — Transcript Normalization

- All transliterated pairs were mapped to their Latinate forms
- Language models were trained directly on the transliterated text
- We only use transliterated WER

Transliteration — Lexicon Normalization

- Phoneme sets are unified by using the IPA
- Lexicons are obtained via G2P
- A Phonetisaurus G2P model is trained on English and Hindi/Bengali Lexicons to produce all pronunciations
 - Seed-lexicon for Hindi and Bengali are obtained from Wikipron. For English, arpabet phonemes in the provided lexicon were remapped to the IPA
- Phonemes shared between English and Hindi/Bengali are "tagged" with a language marker
 - Enables further splitting when there is sufficient acoustic evidence
- All pronunciations, whether derived from the Indic and Latinate word-form, were kept after remapping transliteration pairs to their latinate forms

Transliteration — Accented pronunciation of English words

- Many retained pronunciations correspond to:
 - American or British pronunciations of English words
 - Erroneous pronunciations of Hindi/Bengali words
- We discover new, possibly Indian accented pronunciations for words by decoding the training data with a phoneme-level language model
 - Phoneme sequences are paired with time-aligned, word-level reference transcripts
- Erroneous pronunciations are pruned by retaining only the most likely alternative pronunciations according to a greedy selection strategy

Transliteration – Experiments

System	Split			
~ 5~~~~~	NoDup	Whole	Dup	
Baseline HMM-GMM	27.5	20.3	9.8	
Phonetic	26.6	22.2	15.7	
+ Transliteration Map	26.4	19.2	8.5	
+ Learned Lexicon	25.5	18.0	7.2	
WRN Learned Lexicon (1)	21.4	15.0	5.5	
WRN Learned Lexicon (2)	21.1	14.8	5.6	

- The unified phonetic lexicon improves performance on NoDup but hurts performance on the other test sets.
- Mapping transliteration pairs to their latinate forms for language modeling may help slightly
- The lexicon learning additionally improves performance.
- All combined, our approaches for dealing with transliterated text gave 10% relative improvement over the baseline system

Final Models

- Our best performing systems were BLSTMs pretrained on 960h of Librispeech
- Our approaches for dealing with transliterated speech worked well on Hindi, for which we had close to ground truth knowledge of transliteration pairs
 - Did not change performance in Bengali, for which we had many fewer pairs
- We used an expanded lexicon in decoding to which we added English words from CMU-dict as well as words scraped from technical web material in Hindi
- Our final systems rescored lattices with an RNNLM trained on the training transcript augmented with some web-scraped technical material in Hindi.
- The best performing systems in each language were combined via MBR decoding

Conclusion

- Good data-preparation is fundamental to training models!
- Transliteration pairs can be a valuable resource in handling codeswitched speech.

Thanks!